user
-
Python脚本批量下载网站图片的5个关键步骤与常见问题解决
当你需要收集某个网站的所有产品展示图时,手动右键保存效率太低。上周我帮朋友下载某电商平台2000张手机壳图片,手动操作需要3天,而用Python脚本只用了15分钟。 准备工作 安装Python3.6+(建议使用Anaconda...
-
告别广告烦恼!教你用抓包分析智能电视背后的秘密
智能电视越来越普及,给我们带来丰富娱乐生活的同时,也带来了不少困扰——开机广告、应用推荐广告、内容植入广告……简直防不胜防!想知道这些广告到底从哪里来?今天,我就教你一招,通过抓包分析,揪出智能电视广告请求的域名,让你对广告来源一目了然!...
-
智能电视广告过滤全攻略:从路由器设置到系统级屏蔽
每次开机先看30秒开机广告,追剧中途突然弹出购物广告,甚至暂停时都被广告霸屏——这些糟心事全因智能电视系统深度集成了广告SDK。2022年《智能电视广告用户体验报告》显示,87%的用户对强制广告表示强烈反感,但仅12%的人成功关闭过广告。...
-
UDP vs TCP 深度对决:为何DNS、实时音视频、游戏更偏爱“不靠谱”的UDP?
作为开发者,咱们在选择网络传输协议时,经常面临 TCP 和 UDP 这两个老朋友。教科书上通常会告诉你:TCP 可靠、面向连接、速度稍慢;UDP 不可靠、无连接、速度快。听起来好像很简单?但实际应用选型时,远不止这些标签。 想象一下,...
-
如何设计一个健壮的 Redis Stream 死信队列(DLQ)处理服务
你好,我是你的后端架构师伙伴。今天我们来聊聊一个在基于 Redis Stream 构建消息系统时,经常遇到的一个棘手问题——如何优雅且可靠地处理那些处理失败的消息,也就是所谓的“死信”。直接丢弃?不行,那可能丢失重要业务数据。无限重试?更...
-
Redis统计大比拼:Bitmap vs HyperLogLog 内存与精度如何抉择?
在处理海量数据统计,特别是需要计算独立用户数(UV)、日活跃用户(DAU)这类去重计数(Cardinality Estimation)的场景时,Redis 提供了两种非常强大的数据结构:Bitmap 和 HyperLogLog (HLL)...
-
广告系统UV统计大杀器 Redis HyperLogLog 实战案例分享
搞广告系统的兄弟们,肯定都为一件事情头疼过——**独立用户覆盖数(Unique Visitors, UV)**的统计。尤其是当你的系统需要处理海量曝光、点击数据,并且业务方还要求实时、多维度(跨广告、跨时间、跨地域等)查询UV时,那酸爽....
-
Redis HyperLogLog 实战指南:在 Flink/Spark 中实现海量数据实时基数统计与状态管理
在处理海量实时数据流时,精确计算独立访客数(UV)、不同商品被点击次数等基数(Cardinality)指标往往是性能瓶颈。传统的 COUNT(DISTINCT column) 或 Set 数据结构在数据量巨大时会消耗惊人的内存和计算资...
-
亿级DAU统计难题?Redis HyperLogLog如何用12KB内存轻松搞定
场景痛点:海量用户活跃统计,内存告急! 想象一下,你的应用拥有上亿甚至几十亿的用户,每天需要统计有多少不同的用户登录或活跃(DAU - Daily Active Users)。最直观的想法是什么? 可能很多人会想到用 Redis ...
-
Redis分布式锁实战避坑指南-TTL、粒度、可重入和Watchdog怎么选
兄弟们,搞分布式的,哪个没踩过Redis分布式锁的坑?这玩意儿用起来方便,但真要落地到生产环境,各种细节问题能让你头疼好几天。今天咱们就来盘点盘点,实际项目中用Redis锁,最容易遇到的几个大坑,以及怎么爬出来。 坑一:锁的超时时间(...
-
消息队列消费重复?业务ID、状态机、分布式锁如何实现优雅幂等
嘿,各位奋斗在后端的兄弟姐妹们,咱们聊个老生常谈但又极其重要的话题——消息队列(MQ)的消费幂等性。用MQ解耦、异步、削峰填谷是爽,可一旦涉及到关键业务,比如订单创建、积分增减、库存扣减,要是消息被重复消费了,那后果...啧啧,轻则数据错...
-
精通 iptables CONNMARK:实现复杂应用流量的精准识别与优先级控制
在复杂的网络环境中,我们常常需要对不同类型的网络流量进行区分对待,特别是要保证关键应用的服务质量(QoS)。比如,你可能希望优先处理集群内部节点间的通信流量,或者为特定用户的 SSH 会话提供更低的延迟。传统的基于 IP 地址和端口的 ...
-
解密Elasticsearch数据迁移加速器:`_reindex` `slices` 与 Logstash `workers` 并行大比拼
在 Elasticsearch (ES) 的世界里,数据迁移或重建索引(reindex)是家常便饭。无论是集群升级、索引配置变更(比如修改分片数、调整 mapping),还是单纯的数据整理,我们都希望这个过程尽可能快、尽可能平稳。为了加速...
-
Elasticsearch数据迁移:_reindex API 与 Logstash 数据转换清洗能力深度对比
Elasticsearch 数据迁移: _reindex API 与 Logstash 数据转换清洗能力深度对比 在 Elasticsearch (ES) 的世界里,数据迁移是家常便饭,无论是版本升级、硬件更换,还是索引结构调整,都...
-
Elasticsearch 跨集群数据迁移:`_reindex` from remote 与 Logstash 深度对比与选型指南
在 Elasticsearch (ES) 的世界里,数据迁移或同步是一个常见的需求。无论是集群升级、数据架构调整,还是将数据从一个环境复制到另一个环境,你都可能需要在不同的 ES 集群之间移动数据。这时,两个主流的工具常常被提及:ES 内...
-
Elasticsearch 数据迁移:_reindex API vs Logstash 深度对比与选型指南
引言:为何需要数据迁移? 在 Elasticsearch 的世界里,数据迁移是个绕不开的话题。无论是集群版本升级、索引 Mapping 结构变更(比如修改字段类型、增加新字段分析方式)、索引分片策略调整,还是单纯的数据归档整理,都可能...
-
Elasticsearch查询性能揭秘:Term、Match、Range、Bool底层执行差异与优化之道
Elasticsearch查询性能:不只是搜到,更要搜得快! 嘿,各位在Elasticsearch(简称ES)世界里摸爬滚打的兄弟姐妹们!我们天天都在用ES写查询,什么 term 、 match 、 range 、 bool 信手拈来...
-
Elasticsearch协调节点如何精确路由查询?揭秘时间范围和通配符索引下的智能分发
Elasticsearch查询路由的奥秘:协调节点如何知道将请求发往何处? 当你向Elasticsearch集群提交一个查询请求时,有没有想过,这个请求是如何精准地找到存储相关数据的“小房间”(分片 Shard)的?特别是当你的查询涉...
-
Elasticsearch聚合查询性能优化实战:告别缓慢,榨干性能的关键技巧
Elasticsearch (ES) 的聚合(Aggregations)功能极其强大,是进行数据分析和构建仪表盘的核心。但随着数据量增长和查询复杂度提升,聚合查询的性能往往成为瓶颈。查询响应缓慢、CPU 飙升、内存 OOM… 你是否也遇到...
-
Elasticsearch Normalizer解密:让Keyword字段也能『不拘小节』地精确匹配
在 Elasticsearch (ES) 的世界里, keyword 字段类型是用于存储那些不需要分词、需要精确匹配的文本,比如标签、状态码、用户名、邮箱地址等等。它就像一个严谨的守门员,只有一模一样的值才能通过。 但有时候,这种『...