性能优化
-
如何优化大数据处理的并行计算性能?
在当今信息爆炸的时代,大数据已经成为各行业决策的重要依据。然而,面对如此庞大的数据量,传统的数据处理方式往往显得力不从心。因此,优化大数据处理中的并行计算能力就显得尤为重要。下面,我们将深入探讨这一主题。 1. 理解并行计算 并行...
-
BPMED 技术在梯度结构材料制造中的应用:从金属过渡到金属
你好,我是材料学爱好者“炼金小能手”! 今天,咱们来聊聊一个挺“高大上”的话题——BPMED 技术,以及它在制造“高难度”梯度结构材料方面的应用。听起来是不是有点烧脑?别担心,我会用最通俗易懂的方式,带你揭开 BPMED 技术的神秘面...
-
AI芯片设计面临的五大主要挑战
随着人工智能技术的飞速发展,AI芯片作为其底层硬件支撑,其重要性不言而喻。然而,在设计AI芯片时,工程师们面临着诸多技术难题。本文将深入分析当前AI芯片设计中的五大主要挑战,并探讨可能的解决方案。 1. 计算效率与能耗的平衡 AI...
-
游戏开发UDP状态同步实战 如何区分关键与非关键数据并设计传输策略
搞游戏开发的兄弟们,特别是做联机、搞同步的,肯定都绕不开网络这块。TCP可靠但延迟高、有拥塞控制,对于像FPS、MOBA这种需要快速响应的游戏来说,很多时候不那么合适。这时候,UDP就闪亮登场了!它快,延迟低,没TCP那么多条条框框,指哪...
-
数据库老是崩?试试这几招性能优化!
数据库老是崩?试试这几招性能优化! 大家好,我是你们的数据库老 বন্ধু “库库”。今天咱们来聊聊数据库性能优化这个事儿。你是不是也经常遇到数据库突然卡顿、响应慢,甚至直接崩溃的情况?别担心,这可不是什么玄学,多半是性能上出了问题。...
-
CompletableFuture实战:电商商品详情页与微服务性能优化秘籍
CompletableFuture 实战:电商商品详情页与微服务性能优化秘籍 你好呀!我是你们的编程小助手“代码小旋风”!今天咱们来聊聊 Java 并发编程中的一个神器—— CompletableFuture 。相信不少小伙伴在实际开...
-
UDP vs TCP 深度对决:为何DNS、实时音视频、游戏更偏爱“不靠谱”的UDP?
作为开发者,咱们在选择网络传输协议时,经常面临 TCP 和 UDP 这两个老朋友。教科书上通常会告诉你:TCP 可靠、面向连接、速度稍慢;UDP 不可靠、无连接、速度快。听起来好像很简单?但实际应用选型时,远不止这些标签。 想象一下,...
-
Java 并发编程进阶:ForkJoinPool 任务调度策略深度解析与性能优化
你好,我是老码农!很高兴能和你一起深入探讨 Java 并发编程中一个非常强大的工具—— ForkJoinPool 。如果你对并发编程有浓厚的兴趣,并且渴望了解 ForkJoinPool 底层的任务调度机制,那么这篇文章绝对适合你。我们...
-
别再瞎用 Semaphore 了!结合真实案例,教你用它优化数据库、缓存、网络连接
你好,我是爱琢磨的程序猿老李。今天咱们聊聊 Java 并发工具类 Semaphore(信号量)。很多开发者觉得 Semaphore 不就是控制并发线程数嘛,有啥难的?但真要用好它,在实际项目中发挥它的威力,可没那么简单。老李我就结合几个真...
-
Semaphore 的公平与非公平:性能差异与应用场景深度剖析
你好,我是你的 Java 并发小助手。今天我们来聊聊 Java 并发编程中一个非常重要的工具—— Semaphore (信号量)。特别是,我们要深入探讨它的两种模式:公平模式和非公平模式,以及它们在不同业务场景下的性能差异。准备好你的咖啡...
-
别再只会 Mutex 了!Java 多线程性能优化之 SIMD 指令集 (AVX/SSE) 实战
大家好,我是你们的硬核老哥阿猿。今天咱们不聊虚的,直接上干货,聊聊 Java 多线程性能优化里一个经常被忽视的“大杀器”——SIMD 指令集(Single Instruction Multiple Data),特别是 AVX 和 SSE。...
-
Elasticsearch Bulk写入与Indexing Buffer深度解析:为何批量操作效率远超单条?
你好!如果你正在处理将大量数据导入Elasticsearch(简称ES)的任务,并且希望榨干系统的每一分性能,那么理解 Bulk API 如何与 Indexing Buffer 协同工作至关重要。很多开发者知道 Bulk 比单...
-
深入探讨Semaphore的公平性与非公平性对性能的影响
Semaphore简介 Semaphore是Java并发编程中用于控制多线程访问共享资源的工具,它允许一定数量的线程同时访问某个资源,通常用于限流、线程池管理、资源池管理等场景。Semaphore的核心在于它的信号量机制,通过 acq...
-
如何监控与优化Java中的ForkJoinPool:线程数量、任务队列长度等关键指标
一、ForkJoinPool简介 ForkJoinPool是Java 7引入的一个并行任务执行框架,特别适合处理递归分治的任务。它使用了工作窃取算法(Work-Stealing Algorithm),能够高效地利用多核CPU资源。然而...
-
如果我能创造一种材料:超强、超轻、还能自我修复?这脑洞有点大!
嘿,大家好,我是爱做白日梦的材料学砖家——砖头君。今天咱们来聊一个特别科幻的话题:如果我能创造一种全新的材料,它会是什么样的? 脑洞大开:我的“梦幻材料”蓝图 既然是做梦,那就大胆一点!我的“梦幻材料”必须具备以下几个核心特性: ...
-
深度解析HikariCP连接池配置:如何通过参数调优提升性能与稳定性
引言 HikariCP作为Java领域中最快的数据库连接池之一,凭借其轻量级和高性能的特性,被广泛应用于各类Java项目中。然而,要想充分利用HikariCP的优势,合理配置连接池参数至关重要。本文将深入探讨HikariCP的关键配置...
-
Elasticsearch按天索引查询:指定具体索引列表对比通配符(`*`)性能提升多少?原因何在?
引言:日志查询的“速度与激情” 嘿,各位奋战在一线的运维和开发老铁们!处理海量的滚动日志数据,尤其是用Elasticsearch(简称ES)来存储和查询,是不是家常便饭?我们经常会按天创建索引,比如 applogs-2023-10-...
-
前端进阶:Service Worker 如何让你的 PWA 飞起来?(离线缓存、生命周期、优化技巧全解)
各位前端er,想让你的 PWA (Progressive Web App) 拥有媲美原生 App 的体验吗?其中一个关键技术就是 Service Worker。它能让你的应用在离线状态下也能访问,并实现各种高级缓存策略,显著提升用户体验。...
-
Elasticsearch段合并深度解析:策略、影响与优化调优
1. 背景:为什么需要段合并? 在深入探讨段合并(Segment Merging)之前,我们得先理解Elasticsearch(底层是Lucene)是如何存储和处理数据的。当你向Elasticsearch索引文档时,数据并不会立即直接...
-
Elasticsearch查询性能揭秘:Term、Match、Range、Bool底层执行差异与优化之道
Elasticsearch查询性能:不只是搜到,更要搜得快! 嘿,各位在Elasticsearch(简称ES)世界里摸爬滚打的兄弟姐妹们!我们天天都在用ES写查询,什么 term 、 match 、 range 、 bool 信手拈来...
