像处理
-
照片记录事件现场:从手机到专业相机,如何用照片记录事件现场?
照片记录事件现场:从手机到专业相机,如何用照片记录事件现场? 生活中,我们总会遇到需要用照片记录事件现场的情况,比如交通事故、意外事件、犯罪现场等等。一张清晰的照片,可以为我们提供重要的证据,帮助我们还原事件真相,甚至可以帮助警方破案...
-
Coolors 导出攻略:玩转颜色代码、CSS 生成与设计软件联动,让你的配色方案飞起来!
嘿,设计师们! 你是否也曾为找到完美的配色方案而绞尽脑汁?是否也曾为将心仪的颜色应用到不同的设计平台而烦恼?如果是,那么恭喜你,找对地方了!今天,咱们就来深入探讨 Coolors 的“导出”功能,让你轻松驾驭色彩,让配色方案在不同平台...
-
L1正则化数学原理大揭秘
L1正则化数学原理大揭秘 哎呀,说到L1正则化,你是不是感觉脑瓜子嗡嗡的?别怕!今天咱就用大白话,把L1正则化这玩意儿的数学原理掰开了揉碎了,给你讲得明明白白!保证你听完之后,感觉就像吃了炫迈一样,根本停不下来! 啥是正则化? ...
-
FastICA算法参数调优对语音情感识别的影响
引言 你是否想过,机器如何“听懂”我们说话时的喜怒哀乐?语音情感识别(Speech Emotion Recognition, SER)技术正在让这一切成为可能。而独立成分分析(Independent Component Analysi...
-
KL散度非负矩阵分解(NMF)迭代算法的数学推导与音乐信号处理应用
KL 散度 NMF 迭代算法:数学推导与音乐信号处理实践 在数字信号处理和机器学习领域,非负矩阵分解(Non-negative Matrix Factorization,NMF)是一种强大的技术,用于将非负数据矩阵分解为两个非负矩阵的...
-
深入浅出NMF非负矩阵分解:数学原理、优化算法与Python实战
深入浅出NMF非负矩阵分解:数学原理、优化算法与Python实战 你是不是经常遇到数据降维、特征提取、主题模型这些概念?今天,咱们就来聊聊一个在这些领域都大放异彩的算法——NMF(Non-negative Matrix Factori...
-
深入浅出:NMF乘法更新规则的数学推导与伪代码实现
你好!今天我们来深入探讨一下非负矩阵分解(NMF)中至关重要的乘法更新规则。我会用清晰的数学推导、通俗的语言和伪代码示例,带你一步步理解这个算法的核心。无论你是机器学习的初学者,还是希望深入研究NMF的算法工程师,相信这篇文章都能为你提供...
-
KL散度下的NMF:原理、推导及伪代码实现
引言 非负矩阵分解 (NMF, Non-negative Matrix Factorization) 是一种常用的降维和特征提取技术。 你可以将它想象成一种“积木搭建”的过程:给定一堆“积木”(原始数据),NMF试图找出一些“基础积木...
-
KL散度在非负矩阵分解(NMF)中的应用及优势
非负矩阵分解(NMF)是一种常用的数据降维和特征提取技术,它将一个非负矩阵分解为两个非负矩阵的乘积。在NMF中,选择合适的损失函数至关重要,它决定了分解结果的质量和特性。KL散度(Kullback-Leibler divergence)作...
-
KL散度在非负矩阵分解(NMF)中的两种形式及应用
咱们今天来聊聊非负矩阵分解(NMF)中的一个核心概念——KL散度,以及它在NMF中两种不同的“打开方式”。别担心,我会尽量用大白话,把这个听起来有点“高大上”的东西讲清楚。 啥是NMF?它跟KL散度有啥关系? 先说说NMF是干啥的...
-
Python实现KL散度NMF算法及两种KL散度对比
Python实现基于KL散度的NMF算法及两种KL散度对比 非负矩阵分解 (NMF, Non-negative Matrix Factorization) 是一种常用的数据降维和特征提取技术,在图像处理、文本挖掘、推荐系统等领域有着广...
-
NMF算法在协同过滤推荐中的应用:原理与实战
NMF算法在协同过滤推荐中的应用:原理与实战 “咦?这个电影我好像没看过,但评分预测还挺高,要不要试试?” 你是不是经常在各种App上遇到类似的情景?这背后,很可能就藏着一种叫做“非负矩阵分解”(Non-negative Matrix...
-
NMF算法中的损失函数:平方损失与KL散度深度解析
NMF算法中的损失函数:平方损失与KL散度深度解析 非负矩阵分解(Non-negative Matrix Factorization,NMF)是一种强大的数据分析技术,广泛应用于推荐系统、图像处理、文本挖掘等领域。NMF 的核心思想是...
