线程池
-
Semaphore 的公平与非公平:性能差异与应用场景深度剖析
你好,我是你的 Java 并发小助手。今天我们来聊聊 Java 并发编程中一个非常重要的工具—— Semaphore (信号量)。特别是,我们要深入探讨它的两种模式:公平模式和非公平模式,以及它们在不同业务场景下的性能差异。准备好你的咖啡...
-
别再只会 Mutex 了!Java 多线程性能优化之 SIMD 指令集 (AVX/SSE) 实战
大家好,我是你们的硬核老哥阿猿。今天咱们不聊虚的,直接上干货,聊聊 Java 多线程性能优化里一个经常被忽视的“大杀器”——SIMD 指令集(Single Instruction Multiple Data),特别是 AVX 和 SSE。...
-
Java连接池深度解析:原理、流程、并发处理、配置与优化
Java连接池深度解析:原理、流程、并发处理、配置与优化 1. 什么是连接池? “连接池”,顾名思义,就是一个存放数据库连接的“池子”。咱们平时访问数据库,是不是每次都要先创建一个连接,用完再关闭?这就像每次想喝水都得先去打一桶水...
-
Elasticsearch Bulk写入与Indexing Buffer深度解析:为何批量操作效率远超单条?
你好!如果你正在处理将大量数据导入Elasticsearch(简称ES)的任务,并且希望榨干系统的每一分性能,那么理解 Bulk API 如何与 Indexing Buffer 协同工作至关重要。很多开发者知道 Bulk 比单...
-
Java并发编程工具比较:CompletableFuture、ExecutorService与Future的深入解析
在Java并发编程中,选择合适的工具是提高程序性能和开发效率的关键。本文将深入对比 CompletableFuture 、 ExecutorService 和 Future ,帮助你更好地理解它们的适用场景、优缺点以及如何选择最适合的工具...
-
深入探讨Semaphore的公平性与非公平性对性能的影响
Semaphore简介 Semaphore是Java并发编程中用于控制多线程访问共享资源的工具,它允许一定数量的线程同时访问某个资源,通常用于限流、线程池管理、资源池管理等场景。Semaphore的核心在于它的信号量机制,通过 acq...
-
如何监控与优化Java中的ForkJoinPool:线程数量、任务队列长度等关键指标
一、ForkJoinPool简介 ForkJoinPool是Java 7引入的一个并行任务执行框架,特别适合处理递归分治的任务。它使用了工作窃取算法(Work-Stealing Algorithm),能够高效地利用多核CPU资源。然而...
-
Elasticsearch跨地域CCR复制延迟与带宽瓶颈终极指南:TCP优化与ES配置实战
当你负责维护横跨大洲(比如亚欧、跨太平洋)的 Elasticsearch 集群,并依赖跨集群复制(CCR)来同步数据时,高延迟和有限的带宽往往会成为性能杀手,导致数据同步滞后、复制不稳定。别担心,这并非无解难题。咱们今天就深入聊聊,如何通...
-
深入剖析 Java ForkJoinPool:工作窃取算法及性能对比
你好,我是你们的“并发编程小能手”!今天咱们来聊聊 Java 并发编程中的一个高级工具——ForkJoinPool。别看它名字里带个“Pool”(池),它可不是一般的线程池。ForkJoinPool 是 Java 7 引入的一种特殊线程池...
-
Elasticsearch 远程 Reindex 与 Logstash 迁移:解密 slices、pipeline.workers、output.workers 性能调优
Elasticsearch 数据迁移: _reindex 与 Logstash 的性能博弈 在 Elasticsearch (ES) 的世界里,数据迁移是个常见但充满挑战的任务。无论是集群升级、硬件更换,还是架构调整,把海量数据从一...
-
Java多阶段任务中动态调整线程数量的艺术
Java多阶段任务中动态调整线程数量的艺术 大家好,我是你们的“线程掌门人”阿猿!今天咱们来聊聊Java多线程编程中一个比较高级的话题:如何在多阶段任务中动态调整线程数量。别担心,我会用大白话,结合代码示例,一步步带你揭开这门“武功”...
-
ForkJoinPool任务窃取机制深度剖析:递归任务的并行优化
ForkJoinPool任务窃取机制深度剖析:递归任务的并行优化 你好,我是你的朋友“并行小能手”。今天咱们来聊聊Java并发编程中的一个高级工具——ForkJoinPool。它特别擅长处理可以“分而治之”的任务,尤其是递归任务。而F...
-
解密Elasticsearch数据迁移加速器:`_reindex` `slices` 与 Logstash `workers` 并行大比拼
在 Elasticsearch (ES) 的世界里,数据迁移或重建索引(reindex)是家常便饭。无论是集群升级、索引配置变更(比如修改分片数、调整 mapping),还是单纯的数据整理,我们都希望这个过程尽可能快、尽可能平稳。为了加速...
-
庖丁解牛 ForkJoinPool:从源码深处剖析其精妙的并行之道
庖丁解牛 ForkJoinPool:从源码深处剖析其精妙的并行之道 你好,我是你的老朋友,码农阿泽。 你是否也曾被 Java 并发编程的复杂性所困扰?多线程、锁、同步……这些概念是否让你感到头疼?别担心,今天我们就来一起深入探索 ...
-
HikariCP 高性能揭秘:ConcurrentBag 的无锁并发之道
大家好,我是你们的科普小助手“代码侦探”。今天,咱们来聊聊 Java 数据库连接池中的“性能之王”——HikariCP。相信很多小伙伴在日常开发中都用过数据库连接池,但你有没有想过,为什么 HikariCP 能在众多连接池中脱颖而出,成为...
-
Redisson 看门狗 (Watchdog) 深度剖析:工作原理、Lua 脚本、性能影响与极端情况
Redisson 作为 Java 中流行的 Redis 客户端,其分布式锁功能广受好评。其中,Watchdog(看门狗)机制是实现锁自动续期的核心,确保了即使业务逻辑执行时间超过预期,锁也不会意外释放导致并发问题。但这个“守护神”是如何工...
-
深入解析ForkJoinPool自定义拒绝策略的应用场景与实现方法
什么是ForkJoinPool? ForkJoinPool是Java 7引入的一个线程池实现,专门用于处理分治任务(Divide and Conquer)。它基于工作窃取(Work-Stealing)算法,能够高效地处理大量并行任务。...
-
Redis分布式锁实战避坑指南-TTL、粒度、可重入和Watchdog怎么选
兄弟们,搞分布式的,哪个没踩过Redis分布式锁的坑?这玩意儿用起来方便,但真要落地到生产环境,各种细节问题能让你头疼好几天。今天咱们就来盘点盘点,实际项目中用Redis锁,最容易遇到的几个大坑,以及怎么爬出来。 坑一:锁的超时时间(...
-
Elasticsearch分片Indexing Buffer深度解析:大小、刷新机制与内存关联
你好,我是老王,一个在ES性能调优上踩过不少坑的工程师。今天我们来聊聊Elasticsearch(简称ES)里一个非常核心但也容易被忽视的组件——分片(Shard)内部的 Indexing Buffer (索引缓冲区)。这玩意儿直接关系...
-
Java 并发编程:ForkJoinPool 原理、递归任务与实战案例详解
Java 并发编程:ForkJoinPool 原理、递归任务与实战案例详解 大家好,我是你们的并发编程向导“并发小能手”!今天咱们来聊聊 Java 并发工具包 java.util.concurrent 中的一个强大的成员—— Fo...
