消息队列
-
MQ消费幂等性保障 Redis分布式锁Watchdog续期机制如何优雅运作
搞分布式系统的兄弟们,肯定都遇到过一个经典场景:用消息队列(MQ)处理任务,为了防止消息被重复消费导致业务错乱,需要保证消费端的幂等性。而实现幂等性,分布式锁是个常用的手段。用Redis做分布式锁,简单高效, SET key value ...
-
消息队列消费重复?业务ID、状态机、分布式锁如何实现优雅幂等
嘿,各位奋斗在后端的兄弟姐妹们,咱们聊个老生常谈但又极其重要的话题——消息队列(MQ)的消费幂等性。用MQ解耦、异步、削峰填谷是爽,可一旦涉及到关键业务,比如订单创建、积分增减、库存扣减,要是消息被重复消费了,那后果...啧啧,轻则数据错...
-
健壮MQ消费框架设计 如何实现自动重试与原子性DLQ投递
在分布式系统中,消息队列(MQ)是解耦和异步化的利器。但只要引入网络和外部依赖,就必然会遇到处理失败的情况:网络抖动、下游服务暂时不可用、数据校验失败等等。如果消费者处理消息失败后直接丢弃或者简单地抛出异常,可能会导致数据丢失或处理不一致...
-
死信队列(DLQ)消息元数据规范指南 为自动化处理铺平道路
在分布式系统和微服务架构中,消息队列(MQ)扮演着至关重要的角色,用于服务间的解耦和异步通信。然而,消息处理并非总是一帆风顺。当消费者处理消息失败,并且重试次数耗尽后,这些“无法处理”的消息通常会被发送到 死信队列(Dead Letter...
-
告别手动捞消息 - 如何用Python自动化处理死信队列难题
你好,我是码农老司机。如果你和消息队列打交道,那么“死信队列”(Dead Letter Queue, DLQ)这个名字你一定不陌生。它就像是消息处理流程中的“急诊室”,专门收治那些因为各种原因无法被正常消费的消息。手动处理DLQ里的消息?...
-
日志处理不再卡壳 如何设计与实现死信队列(DLQ)机制
嘿,各位奋战在日志处理流水线上的工程师朋友们!你是否也遇到过这样的糟心事:一个精心编写的日志处理脚本,跑得好好的,突然就被某个格式诡异的日志文件、或者某个临时抽风的下游服务给卡住了?整个处理流程停滞不前,新的日志堆积如山,告警邮件塞满了邮...
-
解密Elasticsearch数据迁移加速器:`_reindex` `slices` 与 Logstash `workers` 并行大比拼
在 Elasticsearch (ES) 的世界里,数据迁移或重建索引(reindex)是家常便饭。无论是集群升级、索引配置变更(比如修改分片数、调整 mapping),还是单纯的数据整理,我们都希望这个过程尽可能快、尽可能平稳。为了加速...
-
Elasticsearch 数据迁移:_reindex API vs Logstash 深度对比与选型指南
引言:为何需要数据迁移? 在 Elasticsearch 的世界里,数据迁移是个绕不开的话题。无论是集群版本升级、索引 Mapping 结构变更(比如修改字段类型、增加新字段分析方式)、索引分片策略调整,还是单纯的数据归档整理,都可能...
-
从文档数据库到实时内容推荐:技术实践与算法精解
嘿,哥们儿,最近在忙啥呢?是不是又在琢磨怎么让你的网站或者App变得更酷炫、更吸引用户?说实话,现在用户的时间都金贵着呢,谁不想第一时间就把最对胃口的内容推送到他们眼前? 今天咱们就聊聊这个话题——如何利用文档数据库构建一个 实时内容...
-
产品经理必看!文档数据库个性化推荐系统的深度解析
嗨,我是你的老朋友,一个热爱技术也懂点产品的老黄。 今天咱们聊点啥呢?聊聊文档数据库(比如 MongoDB)在内容分发中,如何利用个性化推荐功能,给用户带来更好的体验。作为一名产品经理,你肯定关心用户体验,也得考虑系统性能。所以,咱们...
-
Kubernetes HPA 预测性伸缩:KEDA、Prometheus 玩转智能扩缩容
“喂,小 K 啊,最近网站访问量老是忽高忽低,跟过山车似的,搞得我心惊胆战。你不是 Kubernetes 大神嘛,有没有啥好办法能让服务器自动‘聪明’点,提前做好准备,别等流量真来了才手忙脚乱?” “哈哈,老哥你算是问对人了!Kube...
-
Kubernetes HPA 进阶:玩转弹性伸缩,让你的应用稳如泰山
前言 “喂,哥们,你听说过 HPA 吗?” “当然,Horizontal Pod Autoscaler 嘛,Kubernetes 里的自动扩缩容神器,谁不知道?” “那你觉得 HPA 用起来怎么样?是不是感觉有时候扩缩容不够及...
-
HPA 调优秘籍:告别频繁伸缩,稳操资源分配主动权
你好,我是老 K。在 Kubernetes (K8s) 的世界里,Horizontal Pod Autoscaler (HPA) 就像一位勤劳的管家,它能够根据你的应用负载情况,自动调整 Pod 的数量,从而确保你的应用既能应对流量高峰,...
-
K8s HPA 终极对比:内置指标 vs. 自定义指标,谁更胜一筹?
K8s HPA 终极对比:内置指标 vs. 自定义指标,谁更胜一筹? 各位老铁,咱们今天来聊聊 Kubernetes(K8s)里一个非常重要的功能——Horizontal Pod Autoscaler(HPA,水平 Pod 自动伸缩)...
-
别再盲目扩缩容!K8s 自定义指标伸缩全攻略,教你精准拿捏资源利用率
“哎,集群又双叒叕告警了!CPU 飙到 90% 了,赶紧扩容!” “等等,先看看其他指标,内存才用了 50%,流量也没啥变化,是不是有啥异常?” 相信不少运维小伙伴都经历过类似的场景。在 Kubernetes(K8s)集群中,如何...
-
Kubernetes HPA 自定义指标缩容策略详解及最佳实践
Kubernetes HPA 自定义指标缩容策略详解及最佳实践 在 Kubernetes 中,Horizontal Pod Autoscaler(HPA)是用于自动扩展或收缩 Pod 副本数量的关键组件。默认情况下,HPA 基于 CP...
-
Kubernetes HPA 缩容指南:监控、告警与最佳实践,看完这篇就够了!
“喂,小 K 啊,最近集群资源利用率有点低,你看看能不能优化一下?” “收到,老王!我这就研究下 HPA 的缩容策略。” 相信不少 Kubernetes 工程师都遇到过类似老王这样的需求。HPA(Horizontal Pod Au...
-
在Kubernetes中有状态应用中进行高效HPA缩容的实践指南
引言 在Kubernetes中,Horizontal Pod Autoscaler (HPA) 是一个强大的工具,用于根据资源使用情况自动扩展或缩容应用的Pod数量。然而,对于有状态应用(例如数据库、消息队列等),HPA缩容的过程更为...
-
Java背压机制实战:Web服务、消息队列与数据库访问优化指南
Java背压机制实战:Web服务、消息队列与数据库访问优化指南 嘿,哥们!想必你是一位对Java技术充满热情的开发者,对高并发、高性能的系统设计有着浓厚的兴趣。今天,咱们就来聊聊Java世界里一个非常重要的概念——背压(Backpre...
-
Java 程序员必备:深度剖析背压机制,应对高并发与大数据挑战
你好,我是老码农。在当今这个高并发、大数据时代,作为一名 Java 程序员,你是否经常面临系统性能瓶颈、服务不稳定等问题?尤其是在处理大量数据和高并发请求时,系统很容易出现卡顿、超时甚至崩溃的现象。今天,我将带你深入了解一个能够有效解决这...
