工具
-
汉代提花机:丝绸之路上的技术瑰宝
你是否曾惊叹于古代丝绸的精美绝伦?那些繁复华丽的花纹,究竟是如何织造出来的?今天,咱们就来聊聊汉代纺织业的“黑科技”——提花机,一起揭开它神秘的面纱。 一、 什么是提花机? 在聊汉代提花机之前,咱们先得弄明白“提花”是啥意思。简单...
-
深度学习“复活”古代织机:3D建模揭秘经纬交织的奥秘
你有没有想过,那些精美绝伦的古代丝绸、织锦,究竟是如何织造出来的?在没有现代机械的时代,古人是如何利用简单的工具,将一根根丝线变成巧夺天工的艺术品?今天,咱们就借助深度学习的“火眼金睛”,穿越回过去,一探古代织机的运作流程和原理,并用3D...
-
当AI遇上老祖宗的智慧:《天工开物》深度学习解读
你有没有想过,如果把现代最前沿的AI技术,和几百年前老祖宗的科技智慧结合起来,会碰撞出什么样的火花?今天,咱就来聊聊这个有意思的话题——深度学习技术在解读古代科技文献,尤其是像《天工开物》这样的“硬核”古籍上的应用。 先给不太了解的朋...
-
深度学习赋能:古文词汇还原的艺术与科技
大家好,我是对古文有着浓厚兴趣,同时又痴迷于人工智能技术的你。今天,咱们就聊聊一个既有诗意又充满挑战的话题——如何运用深度学习技术,来破解古文词汇还原这个难题,让那些尘封在历史长河中的文字,重新焕发出它们的光彩。 1. 古文词汇还原:...
-
古文爱好者福利:古文词汇还原那些事儿
“我去,这古文也太难了吧!”你是不是也曾对着满篇的“之乎者也”抓耳挠腮,感叹古人的世界咱不懂?别急,今天咱们就来聊聊古文学习中的一个大难题——古文词汇还原,帮你打通古今语言的“任督二脉”。 先别被“词汇还原”这个听起来很高大上的词吓到...
-
古文通假字、异体字怎么破?一文教你辨识还原!
“哎,这古文里头,一会儿‘说’通‘悦’,一会儿‘女’通‘汝’,还有各种奇奇怪怪的写法,看得我头都大了!” 相信不少小伙伴在读古文的时候,都会遇到这样的困扰。别急,今天咱们就来好好聊聊古文中的通假字和异体字,帮你扫清阅读障碍,轻松读懂古...
-
中文词形还原告别“变形记”:深度学习模型大比拼(RNN/LSTM/Transformer)
“哎呀,这词儿咋又变样了?” 你是不是也经常在处理中文文本时,被各种“变形”的词汇搞得晕头转向?别担心,今天咱们就来聊聊中文 NLP 的一项关键技术—— 词形还原 ,帮你彻底告别中文词汇的“变形记”! 1. 啥是词形还原?跟你有啥关系...
-
中文词形还原方法大揭秘:规则、词典与代码实战
“词形还原”这个词,听起来有点儿学术,但其实它就在我们身边。想想你平时用搜索引擎的时候,输入“苹果的功效”和“苹果功效”,得到的结果是不是差不多?这就是词形还原在起作用。简单来说,词形还原就是把一个词的不同形态,比如“吃”、“吃了”、“正...
-
文本聚类前的“ சுத்தம்”工作:预处理步骤及影响
“喂,哥们儿,你知道文本聚类是啥不?” “听起来挺玄乎,大概就是把一堆文字按某种相似度归堆儿吧?” “没错!但你知道吗,在让机器‘归堆儿’之前,咱们得先给这些文字做个‘大扫除’,也就是文本预处理。这就像炒菜前得洗菜切菜一样,是至关...
-
文本聚类算法实战:电商评论分类与社交媒体话题分析
“文本聚类”这词儿听起来挺玄乎,其实特实用!想象一下,每天电商平台那么多评论,社交媒体上那么多帖子,要是能自动把它们分门别类,那该多方便?没错,文本聚类算法就能干这事儿!今天咱就来聊聊这玩意儿到底咋用,保准你听完也能上手试试。 一、...
-
k-NN算法在文本聚类中的应用:参数选择与调优
你有没有想过,海量的文本数据(比如新闻、博客、评论)是如何被自动归类的? 这背后,有一种叫做“文本聚类”的技术在默默发挥作用。而k-NN(k-Nearest Neighbors,k近邻)算法,作为一种简单又有效的机器学习算法,在文本聚类中...
-
MinHash vs One Permutation Hashing: A Deep Dive into Performance and Application
MinHash 与 One Permutation Hashing 的深度对比:性能与应用解析 哈喽,大家好!我是爱折腾的算法工程师。今天,咱们来聊聊在处理海量数据时,两个非常重要的算法——MinHash 和 One Permutat...
-
LSH局部敏感哈希函数选型指南:MinHash、SimHash等算法优劣及实战建议
咱们今天来聊聊 LSH (Locality Sensitive Hashing,局部敏感哈希) 家族里那些事儿。你是不是也经常遇到海量数据相似性检索的难题?别担心,LSH 就是来拯救你的!不过,LSH 算法可不止一种,什么 MinHash...
-
LSH 降维与其他降维方法大比拼:PCA、t-SNE,谁才是你的菜?
嘿,大家好,我是数据挖掘小能手。 今天,咱们来聊聊在数据处理中,一个非常重要的话题——降维。说到降维,你可能马上会想到几种经典的方法,比如 PCA (主成分分析), t-SNE (t-分布邻域嵌入),当然,还有咱们今天要重点探讨的 L...
-
SimHash 在大规模文本数据处理中的实战指南,开发者必备!
你好,作为一名开发者,你可能经常需要处理大量的文本数据。无论是搜索引擎、内容推荐系统,还是反抄袭系统,都离不开对文本相似度的计算。而 SimHash 算法,正是一种高效、实用的解决方案。今天,我将带你深入了解 SimHash,探讨它在大规...
-
MinHash、SimHash 之外的 LSH 变种:原理、应用场景与优缺点解析
MinHash、SimHash 之外的 LSH 变种:原理、应用场景与优缺点解析 话说回来,咱们平时聊到近似最近邻搜索(Approximate Nearest Neighbor Search,ANN),肯定会想到局部敏感哈希(Loca...
-
GNMF算法中图构建方式对图像修复/分割的影响及实践建议
在图像处理领域,非负矩阵分解(NMF)及其各种变体,如图非负矩阵分解(GNMF),已成为强大的工具,广泛应用于图像修复、图像分割等任务。GNMF 的核心思想是将一个非负矩阵(例如,图像的像素矩阵)分解为两个非负矩阵的乘积,其中一个矩阵可以...
-
GNMF 不止于降噪:探索图像修复与分割中的应用
GNMF 不止于降噪:探索图像修复与分割中的应用 大家好!咱们之前聊过图非负矩阵分解(GNMF)在图像降噪上的应用,效果挺不错。但 GNMF 的本事可不止这些,今天我们就来挖一挖它在图像修复和图像分割上的应用,看看它到底有多厉害,又有...
-
图正则化NMF:图像降噪更上一层楼
图像降噪一直是图像处理领域的热门话题。噪声的存在不仅影响图像的视觉效果,还会干扰后续的图像分析和处理。非负矩阵分解(NMF)作为一种强大的数据降维和特征提取工具,也被广泛应用于图像降噪。然而,传统的NMF方法往往忽略了图像数据的局部结构信...
-
Python实战:NMF矩阵分解Demo,手把手教你实现与效果展示
Python实战:NMF矩阵分解Demo,手把手教你实现与效果展示 “哇,NMF矩阵分解听起来好高级啊!”,“是不是很难学啊?” 别怕,今天咱们就用大白话聊聊NMF(Non-negative Matrix Factorization,...
