副本
-
MongoDB 海量数据处理:分片、索引和聚合的最佳实践
MongoDB 海量数据处理:分片、索引和聚合的最佳实践 MongoDB 作为一款 NoSQL 数据库,在处理海量数据方面有着得天独厚的优势。然而,随着数据规模的不断增长,如何高效地存储、查询和分析这些数据成为了一个关键问题。本文将深...
-
如何避免重要数据丢失?一份程序员的防丢失指南
如何避免重要数据丢失?一份程序员的防丢失指南 作为一名程序员,我们每天都与数据打交道。代码、文档、设计图、数据库……这些数据对我们来说至关重要,一旦丢失,后果不堪设想。所以,如何避免重要数据丢失,成了我们必须认真对待的问题。 这篇...
-
分布式系统中分区容错性的重要性与实现策略
在构建高可用性的分布式系统时, 分区容错性 成为了一个至关重要的话题。当系统中的一部分由于网络故障或机器故障而无法通信时,如何保证剩余部分的可用性和数据一致性,正是我们必须认真考虑的问题。 什么是分区容错性? 简单来说,分区容错性...
-
HikariCP 秘籍:ConcurrentBag 深度解析,并发性能提升的秘密武器
你好呀,我是老码农张三,很高兴能和你一起探索 HikariCP 连接池的奥秘! 如果你也像我一样,对连接池底层实现原理充满好奇,渴望探究 HikariCP 究竟是如何在众多连接池中脱颖而出,成为 Java 世界的性能标杆的,那么恭喜你...
-
HikariCP 高性能揭秘:ConcurrentBag 的无锁并发之道
大家好,我是你们的科普小助手“代码侦探”。今天,咱们来聊聊 Java 数据库连接池中的“性能之王”——HikariCP。相信很多小伙伴在日常开发中都用过数据库连接池,但你有没有想过,为什么 HikariCP 能在众多连接池中脱颖而出,成为...
-
在Docker和Kubernetes环境下,如何优化你的微服务数据库连接池?
嘿,哥们儿! 咱们今天聊聊微服务里头一个挺重要,但容易被忽视的家伙——数据库连接池。 尤其是在Docker和Kubernetes这种容器化环境里,连接池的配置,那可得好好琢磨琢磨。 不然,轻则服务卡顿,重则数据库直接给你撂挑子,后果很严重...
-
Kubernetes HPA 缩容策略深度调优指南:像老司机一样玩转弹性伸缩
“喂,小王啊,你上次不是说你们的那个应用在晚上流量下来之后,服务器资源还一直占着,浪费钱吗?今天哥就来教你几招,保证药到病除!” 大家好,我是你们的赛博老中医,专治各种云原生疑难杂症。今天咱们就来聊聊 Kubernetes 里 HPA...
-
Kubernetes HPA 自定义指标缩容策略详解及最佳实践
Kubernetes HPA 自定义指标缩容策略详解及最佳实践 在 Kubernetes 中,Horizontal Pod Autoscaler(HPA)是用于自动扩展或收缩 Pod 副本数量的关键组件。默认情况下,HPA 基于 CP...
-
别再盲目扩缩容!K8s 自定义指标伸缩全攻略,教你精准拿捏资源利用率
“哎,集群又双叒叕告警了!CPU 飙到 90% 了,赶紧扩容!” “等等,先看看其他指标,内存才用了 50%,流量也没啥变化,是不是有啥异常?” 相信不少运维小伙伴都经历过类似的场景。在 Kubernetes(K8s)集群中,如何...
-
Thanos:Prometheus 长期存储与高可用的终极解决方案?
Thanos:Prometheus 长期存储与高可用的终极解决方案? 大家好,我是你们的“监控老司机”!今天咱们来聊聊 Prometheus 的长期存储和高可用问题。相信不少小伙伴在使用 Prometheus 的过程中,都会遇到数据保...
-
Elasticsearch 索引生命周期管理 (ILM) 详解 优化你的数据存储和性能
嘿,哥们儿,最近在玩 Elasticsearch 吗?是不是觉得数据越来越多,索引越来越大,查询越来越慢?别担心,今天咱们就来聊聊 Elasticsearch 的一个超级好用的功能——索引生命周期管理 (ILM)。这玩意儿就像给你的索引上...
-
Elasticsearch分片Indexing Buffer深度解析:大小、刷新机制与内存关联
你好,我是老王,一个在ES性能调优上踩过不少坑的工程师。今天我们来聊聊Elasticsearch(简称ES)里一个非常核心但也容易被忽视的组件——分片(Shard)内部的 Indexing Buffer (索引缓冲区)。这玩意儿直接关系...
-
Redis Stream消费组:原理、实践与Kafka对比,解锁高性能消息队列
你好,我是老王,一个折腾后端技术的老兵。今天我们聊聊 Redis 5.0 带来的一个重量级特性——Stream。很多人可能用 Redis 做缓存、做分布式锁,但你知道它也能当一个相当不错的消息队列(MQ)吗?特别是它的消费组(Consum...
-
边缘 MQTT Broker 集群:授权一致性与可信 Broker 选择策略
在边缘计算场景下,MQTT Broker 集群的部署变得越来越普遍。这种部署方式能够有效地降低延迟、提高可靠性,并减轻云端压力。然而,当多个本地 Broker 同时与云端通信时,如何保证授权策略的一致性,以及在网络分区时,设备如何选择最可...
-
Lua多线程共享数据同步优化:避免锁竞争
问题:我的Lua脚本在多个线程中跑,每次调用C++函数都可能会修改共享数据。我担心频繁加锁解锁会带来巨大的性能开销,尤其是在每秒处理上万次请求时,有没有什么办法能在保证安全的同时尽量减少性能损耗? 这是一个非常实际且常见的问题,尤其是...
-
分布式事务中的原子性、CAP理论与最终一致性:高可靠系统如何炼成?
在构建高可靠的分布式系统时,数据一致性和事务的可靠性始终是核心挑战。用户提到了金融系统,这确实是一个对一致性要求极高的场景,但其背后支撑的技术原理是普遍适用于所有需要强数据保障的分布式应用的。我们今天就来聊聊分布式事务中的原子性、CAP理...
-
全球社交媒体内容同步:如何在可用性与一致性间取得平衡?
在全球化社交媒体平台的设计中,确保用户发布的内容能够迅速在全球范围内同步,同时又允许短暂的区域性延迟以优化用户体验,这确实是一个非常经典且充满挑战的问题。它本质上是在**可用性(Availability) 和 一致性(Consistenc...
-
跨地域团队协作文档总是一团糟?揭秘背后的“版本控制”与“冲突解决”魔法
在跨地域团队协作中,你是否也遇到过这样的窘境:会议纪要、需求文档更新总是不及时,不同团队成员在不同版本上讨论,最终导致信息混乱,甚至项目返工?作为产品经理,深感其痛。这背后,其实涉及到文档协作中两大核心挑战—— 版本管理 和 冲突解决 。...
-
离职员工设备数据安全擦除全流程:合规操作与风险防范指南
员工离职数据安全处理全流程:从法律合规到设备擦除 当员工离职时,妥善处理其在公司设备(如电脑、手机、移动硬盘)上的数据,不仅是IT管理的常规工作,更是履行《个人信息保护法》义务、防范数据泄露风险的关键环节。根据《个人信息保护法》第四十...
-
电脑硬盘有“回收站”吗?聊聊文件删除后的恢复与备份方案
很多手机用户熟悉“回收站”或“云同步”功能,误删文件后能轻松找回。电脑硬盘虽然没有完全一样的机制,但原理相通,也有多种方法实现文件的恢复和备份。本文将为你梳理电脑端的实用方案。 1. 电脑上的“回收站”:第一道防线 与手机类似,W...