高维数据
-
不同ANNS算法在图像、文本、基因数据上的性能对比
咱们今天来聊聊近似最近邻搜索(ANNS)算法这个话题。你是不是经常在各种应用里看到“猜你喜欢”、“相关推荐”这类功能?这些功能的背后,ANNS 算法功不可没。简单来说,ANNS 算法就是帮你在一大堆数据里,快速找到和你想要的那个最像的几个...
-
ANNS算法在不同数据规模与应用场景中的性能优化
近似最近邻搜索(Approximate Nearest Neighbor Search,简称ANNS)是大规模数据处理中常用的技术,尤其是在高维数据检索、推荐系统、图像搜索等领域。然而,不同的数据规模和场景对ANNS算法的表现有显著影响。...
-
MinHash vs One Permutation Hashing: A Deep Dive into Performance and Application
MinHash 与 One Permutation Hashing 的深度对比:性能与应用解析 哈喽,大家好!我是爱折腾的算法工程师。今天,咱们来聊聊在处理海量数据时,两个非常重要的算法——MinHash 和 One Permutat...
-
Faiss IndexHNSW 深入解析 参数调整对搜索性能的影响
你好,我是老黄,一个热爱折腾 Faiss 的开发者。今天,我们来聊聊 Faiss 中 IndexHNSW 这个索引,以及它的参数调整对搜索性能的影响。如果你也正在使用或者考虑使用 HNSW 来处理复杂的数据集,那么这篇文章绝对适合你。 ...
-
Faiss 中 PQ (乘积量化) 算法的实现细节深度解析
Faiss 中 PQ (乘积量化) 算法的实现细节深度解析 嘿,各位 Faiss 的老朋友们,咱们又见面啦!这次咱们不聊别的,就来好好啃一啃 Faiss 中一个非常重要的算法——PQ (乘积量化,Product Quantizatio...
-
LSH哈希函数设计与选择:MinHash、SimHash及其他
LSH 哈希函数设计与选择:MinHash、SimHash 及其他 想必你已经对局部敏感哈希(Locality Sensitive Hashing,LSH)有了相当的了解,LSH 的核心思想在于利用哈希函数将高维数据映射到低维空间,同...
-
L1、L2与Elastic Net正则化对模型参数的影响及可视化分析
在机器学习中,正则化是一种防止模型过拟合的重要技术。L1正则化、L2正则化以及Elastic Net是三种常见的正则化方法,它们通过不同的方式对模型参数进行约束,从而影响模型的性能。本文将深入探讨这三种正则化方法在结合损失函数使用时对模型...
