告警
-
CompletableFuture 的异常处理机制在高并发场景下如何保证可靠性?
CompletableFuture 的异常处理机制在高并发场景下如何保证可靠性? 在 Java 开发中, CompletableFuture 是一个强大的工具,用于处理异步操作。但在高并发场景下,如何保证 CompletableF...
-
高并发场景下微服务架构设计:从单体到集群的演进之路
高并发场景下微服务架构设计:从单体到集群的演进之路 随着互联网业务的快速发展,高并发场景下的系统架构设计成为一个越来越重要的课题。单体架构在面对高并发请求时往往力不从心,而微服务架构则凭借其灵活性和可扩展性,成为应对高并发挑战的利器。...
-
性能监控工具的选择与集成经验谈:从Prometheus到Grafana的实践之路
性能监控工具的选择与集成经验谈:从Prometheus到Grafana的实践之路 在如今这个微服务架构盛行的时代,性能监控的重要性不言而喻。一个好的监控系统不仅能帮助我们及时发现并解决问题,还能为系统优化提供宝贵的参考数据。然而,面对...
-
揭秘Prometheus告警规则中的时间序列处理技巧
在现代微服务架构中,监控系统扮演着至关重要的角色,而 Prometheus 作为一款开源监控和报警工具,因其独特的数据模型和灵活性备受青睐。特别是在设置告警规则时,掌握时间序列处理技巧显得尤为重要。 1. 理解时间序列 我们需要明...
-
如何设计一个可扩展、可维护的基于Prometheus的分布式系统监控方案
在现代 IT 基础设施中,监控系统的设计至关重要。尤其是当我们谈论分布式系统时,选择一个合适的监控工具,能够帮助我们更有效地管理与分析各类服务的性能。Prometheus 作为一个流行的开源监控与报警系统,以其强大的功能和灵活性,被越来越...
-
别慌!Kubernetes HPA 缩容那些事儿,以及如何优雅地应对连接池问题
嘿,老铁!Kubernetes HPA 缩容,你真的了解吗? 作为一名合格的 Kubernetes 运维,你肯定对 HPA (Horizontal Pod Autoscaler) 不陌生。它就像一个贴心的管家,根据你的应用负载情况,自...
-
HPA 缩容那些事儿:常见问题与排查指南,告别缩容烦恼!
嗨,大家好!我是老 K,一个在云原生世界里摸爬滚打多年的老兵。今天咱们聊聊 Kubernetes 里的 HPA(Horizontal Pod Autoscaler,水平 Pod 自动伸缩)缩容问题。说实话,HPA 伸缩挺香的,能根据负载自...
-
Prometheus 查询卡顿?一文带你找出原因,告别慢查询!
你好,我是你的老朋友,一个热爱折腾的系统管理员。今天我们来聊聊 Prometheus,一个好用但有时让人头疼的监控神器。在使用 Prometheus 的过程中,你是否遇到过查询卡顿、响应慢的问题?尤其是在数据量大的时候,感觉就像在蜗牛爬行...
-
Thanos:Prometheus 长期存储与高可用的终极解决方案?
Thanos:Prometheus 长期存储与高可用的终极解决方案? 大家好,我是你们的“监控老司机”!今天咱们来聊聊 Prometheus 的长期存储和高可用问题。相信不少小伙伴在使用 Prometheus 的过程中,都会遇到数据保...
-
Prometheus自己监控自己?这波操作稳得很!
不知道各位SRE老铁们有没有遇到过这种情况:Prometheus 兢兢业业地监控着你的各种服务,突然有一天,它自己“挂”了…… 这时候是不是感觉两眼一抹黑,啥也看不见了? 别慌!今天咱就来聊聊 Prometheus 的自我监控,让你彻...
-
如何利用Prometheus的Recording Rules和Alerting Rules结合Bucket数据实现精细化监控告警
在构建Prometheus监控系统时,Recording Rules和Alerting Rules是提升监控效率与精准度的关键工具。本文将深入探讨如何利用这两种规则,并结合Bucket数据,实现更精细化的监控告警。 一、Prometh...
-
Alertmanager集群如何“八卦”?Gossip协议详解与实战
Alertmanager集群如何“八卦”?Gossip协议详解与实战 大家好,我是你们的“八卦”小编!今天咱们不聊明星绯闻,来聊聊Alertmanager集群里那些事儿。你知道吗,Alertmanager集群内部各个节点之间,为了保持...
-
别再只用它检测流量异常啦!孤立森林在日志分析中也大有可为
嘿,大家好!今天咱们聊聊孤立森林(Isolation Forest)算法。提到这个算法,很多小伙伴可能首先想到的是用它来检测网络流量中的异常情况。没错,这是它的“经典应用”,但你可别小瞧了它,孤立森林在日志分析领域也是一把好手,能帮我们揪...
-
Elasticsearch 和 Splunk 怎么选?优缺点全方位对比分析
日常工作中,日志分析是咱们绕不开的一道坎。服务器运行状况、应用程序报错、用户行为记录……这些数据都藏在日志里。想要从海量日志中快速定位问题、挖掘价值,一款强大的日志管理工具必不可少。今天,咱就来聊聊两款主流的日志分析工具:Elastics...
-
日志处理不再卡壳 如何设计与实现死信队列(DLQ)机制
嘿,各位奋战在日志处理流水线上的工程师朋友们!你是否也遇到过这样的糟心事:一个精心编写的日志处理脚本,跑得好好的,突然就被某个格式诡异的日志文件、或者某个临时抽风的下游服务给卡住了?整个处理流程停滞不前,新的日志堆积如山,告警邮件塞满了邮...
-
告别手动捞消息 - 如何用Python自动化处理死信队列难题
你好,我是码农老司机。如果你和消息队列打交道,那么“死信队列”(Dead Letter Queue, DLQ)这个名字你一定不陌生。它就像是消息处理流程中的“急诊室”,专门收治那些因为各种原因无法被正常消费的消息。手动处理DLQ里的消息?...
-
死信队列(DLQ)消息元数据规范指南 为自动化处理铺平道路
在分布式系统和微服务架构中,消息队列(MQ)扮演着至关重要的角色,用于服务间的解耦和异步通信。然而,消息处理并非总是一帆风顺。当消费者处理消息失败,并且重试次数耗尽后,这些“无法处理”的消息通常会被发送到 死信队列(Dead Letter...
-
Redis Stream死信队列设计 为何需要以及如何优雅处理屡次失败的消息
你好,我是专注于构建健壮系统的架构师。在使用 Redis Stream 构建消息系统时,我们经常会遇到一个棘手的问题: 有些消息,无论我们重试多少次,似乎都注定无法被成功处理。 可能是因为消息本身格式错误、依赖的外部服务持续不可用,或者...
-
如何基于 Redis Stream 构建高可靠死信队列(DLQ)机制
在构建基于消息队列的分布式系统时,处理失败的消息是一个绕不开的问题。反复失败的消息如果不能被妥善处理,可能会阻塞正常消息的处理流程,甚至耗尽系统资源。死信队列(Dead Letter Queue, DLQ)是一种常见的解决方案,用于隔离和...
-
电商价格监控?手把手教你用Playwright搭一套!
别再手动刷商品价格啦!作为电商运营,你是不是每天都要盯着竞品的价格变动?手动记录,效率低不说,还容易出错。今天,我就教你用Playwright,轻松搭建一套自动化电商价格监控系统,让你彻底解放双手! 为什么选择Playwright?...
