Grafana
-
如何准确评估数据库仓库的性能瓶颈?5个实用步骤助你排查问题
在管理和维护数据仓库时,性能问题常常是最让人头疼的难题之一。本文将为你提供5个实用的步骤,帮助你准确评估数据库仓库的性能瓶颈,并提供针对性的解决方案。 1. 监控和记录性能指标 要评估数据仓库的性能,首先需要全面监控和记录各项性能...
-
别让Druid防火墙拖了后腿:性能优化与安全平衡之道
大家好,我是老K,一个热爱技术又爱唠叨的程序员。今天咱们聊聊Druid这个大数据分析神器,以及它自带的防火墙——说实话,这玩意儿有时候挺让人又爱又恨的。爱它,因为它能保护我们的Druid集群,抵御各种恶意攻击;恨它,是因为它可能成为性能瓶...
-
别再盲目调参了!Kubernetes HPA 调整微服务连接池参数的踩坑实录与避坑指南
别再盲目调参了!Kubernetes HPA 调整微服务连接池参数的踩坑实录与避坑指南 大家好,我是波哥。今天咱们来聊聊在 Kubernetes 中使用 HPA(Horizontal Pod Autoscaler) 调整微服务连接池参...
-
别慌!Kubernetes HPA 缩容那些事儿,以及如何优雅地应对连接池问题
嘿,老铁!Kubernetes HPA 缩容,你真的了解吗? 作为一名合格的 Kubernetes 运维,你肯定对 HPA (Horizontal Pod Autoscaler) 不陌生。它就像一个贴心的管家,根据你的应用负载情况,自...
-
Kubernetes HPA 缩容性能调优实战:速度、资源利用率与策略优化
“喂,老王,最近咱们的 Kubernetes 集群有点飘啊,流量下来了,Pod 数量半天降不下来,白白浪费资源,老板有意见了!” 电话那头,小李急切的声音传来。 “别慌,小李,这事儿我遇到过。HPA(Horizontal Pod Au...
-
在Kubernetes中有状态应用中进行高效HPA缩容的实践指南
引言 在Kubernetes中,Horizontal Pod Autoscaler (HPA) 是一个强大的工具,用于根据资源使用情况自动扩展或缩容应用的Pod数量。然而,对于有状态应用(例如数据库、消息队列等),HPA缩容的过程更为...
-
Kubernetes HPA 监控与优化:像专业人士一样玩转弹性伸缩
Kubernetes HPA 监控与优化:像专业人士一样玩转弹性伸缩 大家好,我是你们的 K8s 老司机阿强!今天咱们来聊聊 Kubernetes 里一个非常重要的功能——Horizontal Pod Autoscaler(HPA)。...
-
Prometheus在分布式存储环境中的查询性能优化实战指南
Prometheus在分布式存储环境中的查询性能优化实战指南 大家好,我是你们的SRE老伙计“监控狂魔”!今天咱们来聊聊Prometheus在分布式存储环境下的查询性能优化,这可是个硬核话题,直接关系到咱们能不能睡个好觉! 相信在...
-
如何利用Prometheus的Recording Rules和Alerting Rules结合Bucket数据实现精细化监控告警
在构建Prometheus监控系统时,Recording Rules和Alerting Rules是提升监控效率与精准度的关键工具。本文将深入探讨如何利用这两种规则,并结合Bucket数据,实现更精细化的监控告警。 一、Prometh...
-
Alertmanager 报警分组:告别“狼来了”,微服务体系下的报警降噪之道
“狼来了”的故事大家都听过,如果报警太多,大家就会麻木,真正的问题反而会被淹没。在微服务架构下,服务数量众多,监控指标更是海量,如果每个指标都直接报警,运维团队很快就会被报警短信、邮件淹没,疲于奔命,甚至产生“报警疲劳”,导致真正重要的报...
-
告警大师养成记:Alertmanager API 高阶玩法,玩转企业级监控
你好,我是老码农,一个在Kubernetes集群里摸爬滚打多年的“老司机”。今天,咱们不聊那些基础的告警配置,来点儿更刺激的——深入探讨Alertmanager API的高级用法,让你从告警小白晋升为告警大师! 为什么要玩转Alert...
-
ANNs模型如何在实际项目中评估效果并持续改进?
在实际项目中,人工神经网络(Artificial Neural Networks,ANNs)的应用越来越广泛,从图像识别到自然语言处理,再到推荐系统,都能看到ANNs的身影。但是,将一个ANNs模型从实验室环境部署到实际生产环境中,并持续...
-
Elasticsearch通配符查询 vs 精确索引列表:数据节点资源消耗差异深度解析
Elasticsearch查询:通配符( applogs-* ) vs 精确列表( applogs-yyyy-mm-dd, ... ),数据节点资源消耗大比拼 你好!作为一名关心Elasticsearch集群资源消耗的开发者或运维同学...
-
解密Elasticsearch数据迁移加速器:`_reindex` `slices` 与 Logstash `workers` 并行大比拼
在 Elasticsearch (ES) 的世界里,数据迁移或重建索引(reindex)是家常便饭。无论是集群升级、索引配置变更(比如修改分片数、调整 mapping),还是单纯的数据整理,我们都希望这个过程尽可能快、尽可能平稳。为了加速...
-
榨干性能:Trace日志分析脚本的高效优化策略与集成实践
还在用正则表达式硬啃Trace日志吗?性能瓶颈怎么破? 搞运维(DevOps/SRE)的兄弟们,肯定都跟日志打过交道,尤其是分布式系统下的Trace日志,那量级,那复杂度,啧啧... 如果你还在用一个简单的Python脚本,一把梭哈用...
-
健壮MQ消费框架设计 如何实现自动重试与原子性DLQ投递
在分布式系统中,消息队列(MQ)是解耦和异步化的利器。但只要引入网络和外部依赖,就必然会遇到处理失败的情况:网络抖动、下游服务暂时不可用、数据校验失败等等。如果消费者处理消息失败后直接丢弃或者简单地抛出异常,可能会导致数据丢失或处理不一致...
