参数估计
-
啥时候该用低成本的贝叶斯模型,而不是高斯贝叶斯?
很多朋友在学习机器学习的过程中,都会接触到贝叶斯模型,特别是高斯贝叶斯。高斯贝叶斯模型因为其优雅的数学推导和相对容易理解的特性,成为了很多入门教程的重点讲解对象。但是,实际应用中,我们常常需要考虑计算成本和模型复杂度。这时候,选择一个计算...
-
不同情境下样本量计算公式参数的灵活调整
样本量计算,看似简单,实则内藏玄机。你是不是也经常遇到这样的困惑:明明公式就在那里,可一到具体情况,就不知道该如何调整参数了?别担心,今天咱们就来好好聊聊这个话题,让你彻底搞懂样本量计算的“门道”。 咱们的目标读者,是有一定统计学基础...
-
别让样本量拖了后腿! 避坑指南助你避免常见错误,提升研究质量
嘿,大家好!我是老李,一个对数据分析有点痴迷的家伙。最近我发现,很多小伙伴在做研究的时候,常常会遇到一个让人头疼的问题——样本量。样本量不够,研究结果可能不够可靠,甚至会让你之前的努力付诸东流。今天,我就来和大家聊聊样本量计算中那些常见的...
-
损失函数:模型优化的指路明灯?优缺点及性能影响全解析
咱们搞机器学习的,天天跟模型打交道,训练模型的过程,说白了,就是不断调整模型参数,让模型预测的结果跟真实结果越来越接近。那怎么衡量“接近”的程度呢?这就得靠损失函数(Loss Function)了。 啥是损失函数? 想象一下,你玩...
