连接池
-
数据仓库优化前后,查询响应时间的对比:我的亲身经历
数据仓库优化前后,查询响应时间的对比:我的亲身经历 作为一个数据分析师,我每天都与数据仓库打交道。以前,每次查询数据都要等好久,简直是煎熬。自从对数据仓库进行了优化,查询速度提升了不止一个档次,工作效率也显著提高。今天就来分享一下我优...
-
数据库性能测试结果分析:从指标到优化建议
数据库性能测试结果分析:从指标到优化建议 数据库性能测试是评估数据库系统性能的重要手段,通过模拟真实场景下的负载,测试数据库的响应时间、吞吐量、资源利用率等指标,从而发现潜在的性能问题,为优化提供依据。然而,仅仅得到一堆数据并不意味着...
-
优化后数据库性能会有什么变化?从实战经验谈起!
优化后数据库性能会有什么变化?从实战经验谈起! 数据库性能优化是每个开发人员都绕不开的话题,尤其是当你的应用程序开始遇到性能瓶颈时。优化后的数据库性能会带来显著的变化,但具体变化取决于你所采取的优化策略以及数据库本身的状况。 1...
-
Spring Cloud Alibaba 在高并发微服务架构中的应用实践:那些血泪教训与经验总结
Spring Cloud Alibaba 在高并发微服务架构中的应用实践:那些血泪教训与经验总结 作为一名在互联网行业摸爬滚打多年的老码农,我见证了微服务架构的兴起和发展,也亲身经历了Spring Cloud Alibaba在高并发场...
-
如何测试数据库性能瓶颈?逐步指南与实用技巧
在日常的数据库管理中,性能瓶颈往往是最令人头疼的问题之一。本文将详细介绍如何有效地测试数据库性能瓶颈,从而帮助你提升数据库的运行效率。以下是具体的步骤和技巧: 1. 确定性能测试的目标 首先,你需要明确测试的目标。这可以是查询响应...
-
数据库性能测试中,哪些因素需要重点关注?
数据库性能测试中,哪些因素需要重点关注? 数据库性能测试是软件开发过程中必不可少的一环,它可以帮助我们评估数据库系统的性能表现,找出潜在的性能瓶颈,并进行优化。在进行数据库性能测试时,需要关注很多因素,以下列举一些关键的因素: ...
-
Cassandra性能瓶颈:识别与解决之道
Cassandra性能瓶颈:识别与解决之道 Cassandra作为一款强大的NoSQL数据库,在处理海量数据方面表现出色。然而,在实际应用中,我们常常会遇到性能瓶颈,导致系统响应缓慢,甚至崩溃。本文将深入探讨Cassandra性能瓶颈...
-
深入探究:CompletableFuture 与 ForkJoinPool 的结合应用,以及性能提升策略
深入探究:CompletableFuture 与 ForkJoinPool 的结合应用,以及性能提升策略 Java 中的 CompletableFuture 和 ForkJoinPool 是处理异步任务和并发编程的强大工具。 ...
-
Druid 监控在微服务架构中的实战指南:从入门到精通
嘿,哥们!我是老码农,最近在搞微服务,深感监控的重要性啊!今天咱们就来聊聊 Druid 监控在微服务架构中的应用,保证让你从入门到精通,少走弯路! 1. 为什么微服务需要 Druid 监控? 首先,咱们得明白,微服务架构和传统的单...
-
除了索引和数据类型优化,还有什么黑科技能提升数据库查询性能?
除了索引和数据类型优化,还有什么黑科技能提升数据库查询性能?这可是个让我这个数据库工程师老王挠破头皮的问题!很多时候,简单的索引优化已经不够用了,我们需要一些更高级的技巧来提升数据库的查询性能。 一、数据库参数调优: 这可不是...
-
码农进阶指南:从入门到放弃?不存在的!
大家好,我是你们的码界老司机——代码超人! 👨💻 今天咱们不聊高大上的技术,就聊聊咱们码农的那些事儿。毕竟,谁还没个“写代码一时爽,debug火葬场”的经历呢? 🤣 作为一个混迹代码圈多年的老鸟,我见证了无数小伙伴从激情满满地...
-
Semaphore 性能调优秘籍:高并发场景下的实战指南
你好呀,我是老码农张三,一个专注于 Java 并发编程的“老司机”。今天,咱们聊聊在高并发场景下,如何玩转 Java 并发工具箱里的“红绿灯”——Semaphore,并把它调教得服服帖帖,性能杠杠的! 1. Semaphore 是什么...
-
Redis HyperLogLog 实战指南:在 Flink/Spark 中实现海量数据实时基数统计与状态管理
在处理海量实时数据流时,精确计算独立访客数(UV)、不同商品被点击次数等基数(Cardinality)指标往往是性能瓶颈。传统的 COUNT(DISTINCT column) 或 Set 数据结构在数据量巨大时会消耗惊人的内存和计算资...
-
Druid 监控实战:微服务场景下的订单与用户服务性能优化
你好,我是老码农张三。在当今的微服务架构下,系统监控的重要性不言而喻。今天,我将结合实际的订单服务和用户服务场景,带你深入了解如何利用 Druid 监控来定位和解决实际问题,助你成为微服务监控方面的专家。 1. 微服务架构下的挑战 ...
-
HikariCP连接池的idleTimeout和maxLifetime参数深度解析:资源优化与稳定性实战
你好,我是爱折腾技术的技术宅。今天咱们来聊聊Java开发中经常打交道的数据库连接池,特别是HikariCP这个备受推崇的家伙。作为一名有追求的程序员,你肯定希望自己的应用性能杠杠的,资源利用率高高的,系统稳如老狗。那么,HikariCP的...
-
支付系统遭遇流量洪峰时,架构师需要解决的三大技术难题
咱们做支付系统的工程师都深有体会,每年双十一凌晨那个流量曲线,简直比过山车还要刺激。去年我们系统就遇到了个哭笑不得的情况——某网红直播间突然带货某爆款商品,瞬间涌入的支付请求直接把交易流水冲到了日常的178倍。 一、系统架构的极限挑战...
-
Druid 连接池调优:从入门到精通,性能提升秘籍
你好呀,我是老码农!最近在忙着优化 Druid 的连接池,感觉收获颇丰,今天就来跟你好好聊聊这个话题,保证让你受益匪浅! 作为一名 Java 开发者,你肯定对数据库连接池不陌生。Druid 作为阿里巴巴开源的数据库连接池,凭借其出色的...
-
深入解析Java中的Semaphore:底层原理与实现细节
什么是Semaphore? Semaphore(信号量)是Java并发编程中的一个重要工具,用于控制对共享资源的访问。它通过维护一个许可证计数器来实现对资源的限制,确保同一时间只有有限数量的线程可以访问资源。Semaphore的核心思...
-
Semaphore 的公平与效率:高并发下的资源争夺与优化策略
你好呀,我是老码农张三,今天咱们聊聊 Java 并发编程里一个特别实用的工具—— Semaphore (信号量)。 尤其是在高并发的场景下,它就像一个交通指挥官,能帮你控制对共享资源的访问,避免一窝蜂的拥堵。 咱们不光要搞清楚 Sema...
-
Alertmanager 报警分组:告别“狼来了”,微服务体系下的报警降噪之道
“狼来了”的故事大家都听过,如果报警太多,大家就会麻木,真正的问题反而会被淹没。在微服务架构下,服务数量众多,监控指标更是海量,如果每个指标都直接报警,运维团队很快就会被报警短信、邮件淹没,疲于奔命,甚至产生“报警疲劳”,导致真正重要的报...