矩阵分
-
KL散度在NMF中的应用:以文本主题提取为例
咱们今天来聊聊非负矩阵分解(NMF)中的一个重要角色——KL散度。别看它名字里带个“散度”,好像很高深的样子,其实理解起来并不难,关键是它在NMF中起到的作用非常关键。我会尽量用大白话,结合例子,把这事儿给你讲透。 1. 先说说啥是K...
-
KL散度非对称性对NMF结果解释的影响
非负矩阵分解(NMF)是一种常用的数据降维和特征提取技术,广泛应用于图像处理、文本挖掘、生物信息学等领域。NMF的目标是将一个非负矩阵分解为两个非负矩阵的乘积,即 V ≈ WH,其中 V 是原始矩阵,W 是基矩阵,H 是系数矩阵。NMF ...
-
个性化推荐背后的秘密-大数据算法如何“懂你”?电商、新闻APP算法大揭秘!
你有没有这样的经历?刚在电商平台浏览了一款商品,没过多久,类似的商品就铺天盖地地出现在你的首页推荐里。或者,你经常在某个新闻APP上看科技类新闻,它就会源源不断地给你推送相关的内容。这背后,就是大数据算法在发挥作用,它们在悄无声息地“懂你...
-
Python快速上手:构建并评估你的第一个用户行为推荐系统
Python快速上手:构建并评估你的第一个用户行为推荐系统 想不想拥有一个能猜中用户心思的推荐系统?今天,就带你用Python从零开始,构建一个基于用户历史行为的简易推荐系统,并学会如何评估它的效果。别害怕,这比你想象的要容易! ...