高可用
-
CompletableFuture实战:电商商品详情页与微服务性能优化秘籍
CompletableFuture 实战:电商商品详情页与微服务性能优化秘籍 你好呀!我是你们的编程小助手“代码小旋风”!今天咱们来聊聊 Java 并发编程中的一个神器—— CompletableFuture 。相信不少小伙伴在实际开...
-
Alertmanager 报警分组:告别“狼来了”,微服务体系下的报警降噪之道
“狼来了”的故事大家都听过,如果报警太多,大家就会麻木,真正的问题反而会被淹没。在微服务架构下,服务数量众多,监控指标更是海量,如果每个指标都直接报警,运维团队很快就会被报警短信、邮件淹没,疲于奔命,甚至产生“报警疲劳”,导致真正重要的报...
-
如何为增量日志处理脚本设计健壮的状态管理与恢复机制 应对轮转截断等疑难杂症
你好,我是专注于系统稳定性的“代码鲁棒师”。在日常运维和开发中,我们经常需要编写脚本来实时或准实时地处理不断增长的日志文件。一个看似简单的需求——“从上次读取的位置继续处理”,在现实中却充满了陷阱。日志轮转(log rotation)、文...
-
消息队列消费重复?业务ID、状态机、分布式锁如何实现优雅幂等
嘿,各位奋斗在后端的兄弟姐妹们,咱们聊个老生常谈但又极其重要的话题——消息队列(MQ)的消费幂等性。用MQ解耦、异步、削峰填谷是爽,可一旦涉及到关键业务,比如订单创建、积分增减、库存扣减,要是消息被重复消费了,那后果...啧啧,轻则数据错...
-
定时任务用分布式锁,Redisson的看门狗机制真的是最佳选择吗?还有哪些更合适的策略?
定时任务场景下的分布式锁:Redisson 看门狗是不是万能药? 你好,我是负责定时任务系统设计的小伙伴。咱们经常遇到一个经典问题:系统部署了多个实例,为了避免同一个定时任务被重复执行,需要加个分布式锁。这听起来很简单,但魔鬼藏在细节...
-
Redis HyperLogLog 实战指南:在 Flink/Spark 中实现海量数据实时基数统计与状态管理
在处理海量实时数据流时,精确计算独立访客数(UV)、不同商品被点击次数等基数(Cardinality)指标往往是性能瓶颈。传统的 COUNT(DISTINCT column) 或 Set 数据结构在数据量巨大时会消耗惊人的内存和计算资...
-
Redis Stream 精确一次消费 实现的终极指南 - 结合事务、Lua 与持久化
你好,我是专注于分布式系统的老 K。在构建可靠的分布式系统时,消息队列扮演着至关重要的角色。而保证消息的『精确一次处理』(Exactly-Once Semantics)是许多业务场景下的刚需,尤其是在金融、订单处理等对一致性要求极高的领域...
-
如何基于 Redis Stream 构建高可靠死信队列(DLQ)机制
在构建基于消息队列的分布式系统时,处理失败的消息是一个绕不开的问题。反复失败的消息如果不能被妥善处理,可能会阻塞正常消息的处理流程,甚至耗尽系统资源。死信队列(Dead Letter Queue, DLQ)是一种常见的解决方案,用于隔离和...
-
Redis ZSet 延迟队列的可靠性拷问-高效扫描、防重与故障恢复机制深度解析
你好,我是老 K,一个在后端摸爬滚打多年的工程师。用 Redis 的 Sorted Set (ZSet) 做延迟队列,这方案想必不少朋友都用过或者听说过。简单,性能也不错,score 存时间戳,member 存任务 ID 或者任务内容,起...
-
Kubernetes下Snowflake Worker ID分配难题 如何优雅破解?四种主流方案深度对比
嘿,各位在K8s浪潮里翻腾的兄弟们!今天咱们聊一个分布式系统中挺常见,但在K8s这种动态环境里又有点棘手的问题——Snowflake算法的Worker ID分配。 Snowflake本身是个好东西,64位ID,时间戳+数据中心ID+机...
-
Python Celery 异步任务队列实战:从配置到错误处理,构建健壮的邮件发送系统
在现代Web应用开发中,异步任务处理扮演着至关重要的角色。它能够将耗时的操作(例如发送邮件、处理大数据等)从主应用程序流程中分离出来,从而提高应用的响应速度和用户体验。Celery 是一个强大的、分布式的、异步任务队列/作业队列,基于Py...
-
如何构建一套真正衡量技术价值的评估体系?
在当前快速迭代的技术环境中,许多技术负责人都有一个共同的痛点:现有的绩效评估体系,往往难以真正衡量工程师在复杂系统设计、技术难题攻克以及团队技术影响力方面的价值。这导致一些真正有技术深度和远见的骨干人才得不到应有的认可和激励,甚至可能因此...
-
后端新人:消息队列真有那么神?核心价值远不止解耦!
你好啊,后端新人!你这个问题提得特别好,也特别普遍。很多刚接触分布式系统的同学都会有类似的困惑:本来服务间直接调用多简单,为什么非要加个“中间商”——消息队列(Message Queue,简称 MQ)呢?这不是自找麻烦,增加系统复杂性吗?...
-
秒杀系统库存超卖?分布式锁这样选,性能与可靠性两手抓!
我们团队最近在设计秒杀系统时,也遇到了经典的库存超卖问题,确实是个让人头疼的挑战。分布式锁是解决这类问题的“利器”之一,但如何在眼花缭乱的选项中找到最适合秒杀场景的,并兼顾高并发下的性能和可靠性,确实需要好好权衡一番。下面我结合一些实践经...
-
应用配置频繁修改?试试动态配置,告别重启部署!
你提出的问题,是许多应用开发和运维过程中都会遇到的一个痛点—— 配置变更与服务部署强耦合,导致每次修改都要经历繁琐且有风险的发布流程 。这不仅耗时,还可能影响用户体验。幸运的是,业界已经有了一套成熟的解决方案,我们称之为 动态配置管理 。...
-
秒杀系统高并发库存扣减:如何平衡性能与准确性,避免超卖和数据库瓶颈?
老铁,你说的这些痛点,我作为后端开发者,简直是深有体会!秒杀系统那瞬间的百万级请求,尤其是库存扣减,真是系统稳定性的“试金石”。数据库连接池耗尽、超卖,这些都是稍不留神就会踩的坑。我来分享一套我们团队在实际项目中总结出的,兼顾性能、准确性...
-
除了升级红外,还有哪些方法能让监控夜视更清晰?
看到很多朋友都遇到夜间监控效果不佳的问题,除了大家常说的升级摄像头红外性能外,其实还有很多“组合拳”可以打,效果往往比单纯换个高功率红外头要好得多。我结合自己的经验,给大家梳理一下从补光、安装到软件优化几个方面的综合考虑: 一、合理利...
-
微服务转型:如何平衡调用链追踪精度与运维成本?
我们团队在从单体架构向微服务转型的过程中,服务间的通信质量和稳定性确实是一个核心关注点。在分布式系统中,服务调用链路变得复杂,排查问题、性能优化都离不开有效的可观测性手段。调用链追踪(Distributed Tracing)正是解决这些痛...
-
分布式系统中的重试机制:构建弹性服务调用的实践指南
在分布式系统中,服务间调用是常态,但网络波动、下游服务过载或短暂故障等因素,都可能导致请求失败。简单地放弃或立即重试,往往不是最佳方案。一个设计精良的重试机制,是构建高可用、高弹性分布式服务的基石,它既要保证最终一致性,又不能对下游服务造...
-
电商下单支付:看似简单的操作,背后隐藏着哪些数据一致性难题?
作为一名后端开发新手,你肯定对电商平台的下单支付流程感到好奇。用户轻轻一点“提交订单”,背后却牵动着商品库存、订单记录、支付系统等多个服务。这其中,数据一致性至关重要。 问题:电商下单支付,真的是简单的数据库操作吗? 当然不是...