能瓶颈
-
不同数据库的测试场景选型:如何找到最合适的测试方法?
不同数据库的测试场景选型:如何找到最合适的测试方法? 在软件开发中,数据库测试是不可或缺的一部分。而不同类型的数据库,其测试场景和方法也存在着差异。如何选择合适的测试方法,才能有效地验证数据库的性能、安全性和可靠性? 1. 不同数...
-
HikariCP 高性能揭秘:ConcurrentBag 的无锁并发之道
大家好,我是你们的科普小助手“代码侦探”。今天,咱们来聊聊 Java 数据库连接池中的“性能之王”——HikariCP。相信很多小伙伴在日常开发中都用过数据库连接池,但你有没有想过,为什么 HikariCP 能在众多连接池中脱颖而出,成为...
-
HikariCP连接池监控与性能调优:JMX、日志分析与性能测试实战指南
HikariCP连接池监控与性能调优:JMX、日志分析与性能测试实战指南 大家好,我是你们的“数据库连接池小管家”!今天咱们来聊聊HikariCP连接池的监控和性能调优,这可是保证数据库连接稳定高效的关键环节。对于咱们这些注重系统运维...
-
别再瞎猜了!Druid 监控微服务订单和用户服务就这么简单(Java 开发者实战)
别再瞎猜了!Druid 监控微服务订单和用户服务就这么简单(Java 开发者实战) “哎,最近微服务老出问题,查日志查到头秃,要是能有个监控就好了...” 你是不是也经常遇到这样的烦恼?微服务架构下,服务数量众多,相互调用关系复杂...
-
Java 并发编程进阶:深入理解 CyclicBarrier 在团队协作中的应用
你好,我是老码农!今天我们来聊聊 Java 并发编程中一个非常实用的工具—— CyclicBarrier 。 它就像一个“栅栏”,可以协调多个线程,让它们在某个时间点同步,一起“跨越”这道栅栏,继续执行后续任务。这在很多场景下都非常有用,...
-
ForkJoinPool 监控与优化秘籍:性能调优的终极指南
你好,我是老码农张三。在 Java 并发编程的浩瀚海洋中,ForkJoinPool 就像一艘灵活的快艇,能够高效地处理并行任务。但就像任何高性能引擎一样,ForkJoinPool 也需要精心的监控和优化才能发挥其最大潜力。今天,我就来和你...
-
ForkJoinPool 并发度设置:性能调优的实战指南
你好,我是老码农。今天咱们聊聊在 Java 并发编程中,一个经常被忽视但又至关重要的环节—— ForkJoinPool 的并发度设置。很多时候,我们直接使用默认配置,觉得能跑就行。但如果你追求极致的性能,或者经常需要处理大规模数据,那么...
-
别再只会 Mutex 了!Java 多线程性能优化之 SIMD 指令集 (AVX/SSE) 实战
大家好,我是你们的硬核老哥阿猿。今天咱们不聊虚的,直接上干货,聊聊 Java 多线程性能优化里一个经常被忽视的“大杀器”——SIMD 指令集(Single Instruction Multiple Data),特别是 AVX 和 SSE。...
-
Java Vector API 助力科学计算:线性代数、矩阵运算、傅里叶变换性能实战
嘿,老兄,作为一名长期奋战在科学计算和数据分析领域的老码农,你是不是经常被Java在数值计算方面的性能“气”到过?传统的Java实现,在处理大规模数值计算时,总感觉力不从心,效率低下。别担心,今天我就要给你带来一个“秘密武器”——Java...
-
Java Vector API在图像处理中的应用:性能对比与实践指南
Java Vector API 在图像处理中的应用:性能对比与实践指南 大家好,我是你们的“码农老司机”!今天咱们来聊聊 Java Vector API 在图像处理领域的应用,看看它是如何助力我们这些图像处理工程师,提升算法性能的。 ...
-
Java Vector API 助你驾驭多媒体风暴:视频解码与图像处理加速秘籍
嘿,老铁!我是老码农,一个对技术痴迷的家伙。今天,咱们聊聊一个能让你多媒体处理能力瞬间爆炸的神器——Java Vector API。这个API就像是给你的Java代码装上了涡轮增压,让你在视频解码、图像处理这些吃CPU的活儿上,也能跑得飞...
-
数据库连接池 minimumIdle 参数调优实战:少了不够用,多了占资源?
1. 引言:minimumIdle 是个啥? 大家好,我是爱捣鼓数据库的“码农老司机”。今天咱们来聊聊数据库连接池里一个重要的参数: minimumIdle 。这参数,说白了,就是连接池里 最少 要保持多少个 空闲 的数据库连接。 ...
-
在Docker和Kubernetes环境下,如何优化你的微服务数据库连接池?
嘿,哥们儿! 咱们今天聊聊微服务里头一个挺重要,但容易被忽视的家伙——数据库连接池。 尤其是在Docker和Kubernetes这种容器化环境里,连接池的配置,那可得好好琢磨琢磨。 不然,轻则服务卡顿,重则数据库直接给你撂挑子,后果很严重...
-
深入解析Prometheus查询分片:联邦查询、Thanos、Cortex与VictoriaMetrics的优缺点
在现代监控系统中,Prometheus作为一个强大的开源监控工具,广泛应用于各种场景。然而,随着数据量的增加,单个Prometheus实例可能无法处理大量的监控数据。这时候,查询分片技术就显得尤为重要。本文将深入解析Prometheus中...
-
如何通过Prometheus直方图的桶大小优化响应时间测量的准确性
在DevOps领域,Prometheus是一个广泛使用的监控和告警系统,它通过直方图(Histogram)来记录和展示响应时间的分布。直方图的关键在于它的桶(buckets),这些桶定义了响应时间的区间,决定了数据的粒度。选择合适的桶大小...
-
Prometheus 直方图 Bucket 设置秘籍:响应时间分布的艺术
你好,我是老码农,一个在 DevOps 领域摸爬滚打多年的老兵。今天咱们聊聊 Prometheus 直方图(Histogram)的 Bucket 设置,这可是个技术活儿,直接关系到你监控系统的效果和决策的准确性。特别是对于那些需要深度定制...
-
Kubernetes告警风暴治理:从指标优化到规则精细化
“喂,小王啊,今天系统咋样?” “李哥,别提了,告警短信从早上响到现在,跟闹钟似的,烦死了!” “这么多告警?都是啥问题啊?” “嗐,大部分都是些鸡毛蒜皮的小事,CPU抖一下,内存波动一下,就来个告警,真正有问题的没几个。” ...
-
云里雾里说安全:HSM在云计算环境中的部署和优化策略
“喂,小明啊,最近忙啥呢?” “别提了,老板让我研究HSM在云环境中的部署,愁死我了!” “HSM?硬件安全模块?这玩意儿在云里怎么玩?” “可不是嘛!咱今天就来好好聊聊这个话题,给像我一样头疼的小伙伴们支支招。” 啥是H...
-
微服务超时迷雾?分布式追踪帮你精准揪出“慢请求制造者”!
在微服务架构日益普及的今天,一个前端请求可能需要横跨数十个甚至上百个微服务才能完成,请求链路的复杂性呈指数级增长。当出现请求超时时,我们面临的最大挑战就是:如何快速、准确地定位到“罪魁祸首”?究竟是入口服务处理缓慢?是某个中间依赖服务响应...
-
微服务分布式事务如何解决?告别手动补偿的成熟模式与框架
你提到的“线上环境微服务数据不一致,特别是在复杂业务流程中,每次都手动补偿”的问题,确实是微服务架构中的一个老大难问题,也是分布式系统设计中绕不开的挑战。很高兴你开始寻找成熟的模式来系统性解决它,而不是止步于“手动补偿”这种高风险、低效率...