缓存
-
Prometheus与不同长期存储方案集成时的常见问题及解决指南
Prometheus是一款强大的监控和告警工具,广泛应用于现代云原生架构中。然而,随着数据量的增长,单机存储已经无法满足长期数据存储和查询的需求。这时,将Prometheus与外部长期存储方案集成成为了一种常见的解决方案。本文将深入分析P...
-
如何优化Prometheus触发器的性能:减少查询频率与处理延迟
引言 在现代云原生架构中,Prometheus作为监控和告警系统的核心组件,其性能直接影响到整个系统的稳定性与响应速度。特别是当Prometheus用于触发Kubernetes的自动扩展(如KEDA)时,优化其触发器的性能显得尤为重要...
-
深入分析KEDA中Prometheus触发器的实现原理
Kubernetes Event-driven Autoscaling(KEDA)是一个开源项目,旨在通过事件驱动的方式自动扩展Kubernetes的工作负载。在KEDA中,Prometheus触发器是一种强大的机制,它允许开发人员根据P...
-
HPA 调优秘籍:告别频繁伸缩,稳操资源分配主动权
你好,我是老 K。在 Kubernetes (K8s) 的世界里,Horizontal Pod Autoscaler (HPA) 就像一位勤劳的管家,它能够根据你的应用负载情况,自动调整 Pod 的数量,从而确保你的应用既能应对流量高峰,...
-
别再盲目扩缩容!K8s 自定义指标伸缩全攻略,教你精准拿捏资源利用率
“哎,集群又双叒叕告警了!CPU 飙到 90% 了,赶紧扩容!” “等等,先看看其他指标,内存才用了 50%,流量也没啥变化,是不是有啥异常?” 相信不少运维小伙伴都经历过类似的场景。在 Kubernetes(K8s)集群中,如何...
-
HPA缩容不慌!一文搞懂如何监控Pod资源,稳操胜券!
嘿,老铁!我是老K,一个在Kubernetes集群里摸爬滚打多年的“老司机”。最近不少小伙伴在HPA缩容这块儿栽了跟头,要么缩容太激进,导致服务雪崩;要么缩容太慢,浪费资源。今天,老K就来跟大家聊聊,如何在HPA缩容过程中,通过监控和告警...
-
在Kubernetes中有状态应用中进行高效HPA缩容的实践指南
引言 在Kubernetes中,Horizontal Pod Autoscaler (HPA) 是一个强大的工具,用于根据资源使用情况自动扩展或缩容应用的Pod数量。然而,对于有状态应用(例如数据库、消息队列等),HPA缩容的过程更为...
-
HPA 缩容那些事儿:常见问题与排查指南,告别缩容烦恼!
嗨,大家好!我是老 K,一个在云原生世界里摸爬滚打多年的老兵。今天咱们聊聊 Kubernetes 里的 HPA(Horizontal Pod Autoscaler,水平 Pod 自动伸缩)缩容问题。说实话,HPA 伸缩挺香的,能根据负载自...
-
别慌!Kubernetes HPA 缩容那些事儿,以及如何优雅地应对连接池问题
嘿,老铁!Kubernetes HPA 缩容,你真的了解吗? 作为一名合格的 Kubernetes 运维,你肯定对 HPA (Horizontal Pod Autoscaler) 不陌生。它就像一个贴心的管家,根据你的应用负载情况,自...
-
Kubernetes HPA 实战:微服务连接池参数的自动调整
“喂,小 K 吗?最近上了 Kubernetes (K8s),感觉怎么样?” “别提了,老哥。上了 K8s,感觉打开了新世界的大门,但也遇到不少坑。最近就在搞 HPA(Horizontal Pod Autoscaler),发现这玩意儿...
-
在Docker和Kubernetes环境下,如何优化你的微服务数据库连接池?
嘿,哥们儿! 咱们今天聊聊微服务里头一个挺重要,但容易被忽视的家伙——数据库连接池。 尤其是在Docker和Kubernetes这种容器化环境里,连接池的配置,那可得好好琢磨琢磨。 不然,轻则服务卡顿,重则数据库直接给你撂挑子,后果很严重...
-
Java 程序员必备:深度剖析背压机制,应对高并发与大数据挑战
你好,我是老码农。在当今这个高并发、大数据时代,作为一名 Java 程序员,你是否经常面临系统性能瓶颈、服务不稳定等问题?尤其是在处理大量数据和高并发请求时,系统很容易出现卡顿、超时甚至崩溃的现象。今天,我将带你深入了解一个能够有效解决这...
-
深入浅出:响应式编程中的背压机制与Java实践 (Reactor & RxJava)
你好,我是老码农,很高兴能和你一起探讨响应式编程中一个非常重要的话题——背压(Backpressure)。 在当今高并发、大数据量的应用场景下,响应式编程已经成为了主流选择之一。它能够以非阻塞的方式处理数据流,从而提高系统的吞吐量和响...
-
还在用Future?Java响应式编程带你飞!
还在用Future?Java响应式编程带你飞! 大家好,我是你们的编程老司机“代码探险家”!今天咱们聊点儿时髦的,说说Java里的响应式编程,特别是怎么用它来优雅地干掉 Future ,让你的代码在并发场景下跑得更快、更稳、更飘逸! ...
-
Java并发编程工具比较:CompletableFuture、ExecutorService与Future的深入解析
在Java并发编程中,选择合适的工具是提高程序性能和开发效率的关键。本文将深入对比 CompletableFuture 、 ExecutorService 和 Future ,帮助你更好地理解它们的适用场景、优缺点以及如何选择最适合的工具...
-
Java Vector API 在图像处理中的性能较量:向量长度选哪个?
你好呀,我是老码农! 今天咱们来聊聊Java Vector API在图像处理中的一个“小秘密”——向量长度的选择。这可是个技术活儿,直接关系到你图像处理程序的运行速度! 作为一名对性能有极致追求的图像处理工程师,你肯定遇到过这样的...
-
Java多线程性能优化:硬件配置对CPU架构与内存带宽的影响
在Java开发中,多线程技术是提升程序性能的重要手段。然而,多线程的性能并不完全取决于代码本身的优化,硬件配置尤其是CPU架构和内存带宽,也起着至关重要的作用。本文将深入分析不同硬件配置对Java多线程性能的影响,帮助你更好地理解如何通过...
-
如何利用ForkJoinPool优化大数据处理与图像处理性能
在大数据与图像处理领域,性能优化是一个永恒的话题。无论是处理海量数据还是高分辨率的图像,Java提供的 ForkJoinPool 框架都能显著提升任务的执行效率。本文将结合实际业务场景,深入探讨如何通过 ForkJoinPool 优化性能...
-
深入解析ForkJoinPool:工作线程的双端队列与任务窃取机制
引言 在Java并发编程中,ForkJoinPool是一个非常重要的工具,尤其适用于递归任务的并行处理。它的核心设计理念是通过分治策略将大任务拆分为小任务,并利用工作线程的双端队列和任务窃取机制来实现高效的并行计算。本文将深入探讨Fo...
-
深入剖析 Java ForkJoinPool:工作窃取算法及性能对比
你好,我是你们的“并发编程小能手”!今天咱们来聊聊 Java 并发编程中的一个高级工具——ForkJoinPool。别看它名字里带个“Pool”(池),它可不是一般的线程池。ForkJoinPool 是 Java 7 引入的一种特殊线程池...
