相似度
-
OPH算法揭秘:不只是推荐系统,这些领域它也在发光发热!
不知道你有没有好奇过,刷视频的时候,平台是怎么知道你喜欢看什么的?或者在购物网站上,那些“猜你喜欢”的商品又是怎么挑出来的?这背后,其实藏着很多精妙的算法,OPH (One-Permutation Hashing) 算法就是其中之一。 ...
-
t-SNE在情感分析可视化中的应用:调参、解读与实战
t-SNE在情感分析可视化中的应用:调参、解读与实战 大家好,我是你们的“数据挖掘机”!今天咱们来聊聊 t-SNE 这个神奇的降维算法,以及它在情感分析可视化中的应用。如果你已经有了一些机器学习的基础,并且想深入了解 t-SNE 的细...
-
SimHash、MinHash、LSH 大比拼:谁才是文本相似度计算之王?
在海量文本数据处理中,如何快速准确地判断两篇文章是否相似,是个老生常谈却又至关重要的问题。你是不是也经常遇到这样的场景:搜索引擎去重、推荐系统内容过滤、论文查重等等?别担心,今天咱们就来聊聊几种常用的文本相似度计算算法,尤其是 SimHa...
-
用GNN打造个性化视频推荐系统 解决冷启动难题
嘿,老铁们,最近在研究视频推荐系统,发现用图神经网络(GNN)来搞,效果杠杠的!特别是针对新用户和新视频的“冷启动”问题,简直是神器。今天咱们就来聊聊,怎么用GNN构建视频推荐系统,顺便解决掉这个让人头疼的冷启动问题。 1. 为什么G...
-
从文档数据库到实时内容推荐:技术实践与算法精解
嘿,哥们儿,最近在忙啥呢?是不是又在琢磨怎么让你的网站或者App变得更酷炫、更吸引用户?说实话,现在用户的时间都金贵着呢,谁不想第一时间就把最对胃口的内容推送到他们眼前? 今天咱们就聊聊这个话题——如何利用文档数据库构建一个 实时内容...
-
t-SNE降维揭秘:从人脸识别到音乐推荐,多场景应用实战
t-SNE降维揭秘:从人脸识别到音乐推荐,多场景应用实战 嘿,大家好!我是你们的科普向导“数据挖掘机”。今天咱们来聊聊一个超酷炫的数据降维技术——t-SNE(t-distributed Stochastic Neighbor Embe...
-
Faiss 向量检索进阶:带你玩转元数据过滤,电商搜索场景实战解析
哈喽,大家好!我是爱折腾的码农,今天咱们来聊聊 Faiss 这个强大的向量检索库。Faiss 在处理海量向量数据时,速度那叫一个快!不过,光快还不够,在实际应用中,我们经常需要根据一些“附加信息”来筛选结果,比如电商平台上的商品搜索,你肯...
-
未来十年税务管理将如何被科技重塑?从刷脸开票到AI稽查的全程揭秘
一、电子凭证的无声革命:从纸质到全链数字化 你可能不知道,深圳某电子厂去年处理了3.2亿张电子发票,这相当于垒起23座珠峰高度的纸质票据。金税四期系统通过云计算实现了全国90%以上企业的实时税务数据交互,企业财务的『云端迁徙』正在发生...
-
图正则化NMF:图像降噪更上一层楼
图像降噪一直是图像处理领域的热门话题。噪声的存在不仅影响图像的视觉效果,还会干扰后续的图像分析和处理。非负矩阵分解(NMF)作为一种强大的数据降维和特征提取工具,也被广泛应用于图像降噪。然而,传统的NMF方法往往忽略了图像数据的局部结构信...
-
产品经理必看!文档数据库个性化推荐系统的深度解析
嗨,我是你的老朋友,一个热爱技术也懂点产品的老黄。 今天咱们聊点啥呢?聊聊文档数据库(比如 MongoDB)在内容分发中,如何利用个性化推荐功能,给用户带来更好的体验。作为一名产品经理,你肯定关心用户体验,也得考虑系统性能。所以,咱们...
-
Faiss 向量检索加速秘籍 Product Quantization (PQ) 原理解密
Faiss 向量检索加速秘籍 Product Quantization (PQ) 原理解密 你好,我是专注于算法优化的老码农。今天,我们来聊聊 Faiss 中一个非常重要的技术——Product Quantization (PQ),也...
-
SimHash 在大规模文本数据处理中的实战指南,开发者必备!
你好,作为一名开发者,你可能经常需要处理大量的文本数据。无论是搜索引擎、内容推荐系统,还是反抄袭系统,都离不开对文本相似度的计算。而 SimHash 算法,正是一种高效、实用的解决方案。今天,我将带你深入了解 SimHash,探讨它在大规...
-
在 Faiss 中优化 IndexIVFPQ 的 nprobe 参数: 提升搜索性能的实战指南
在 Faiss 中优化 IndexIVFPQ 的 nprobe 参数 提升搜索性能的实战指南 嘿,哥们,我是老码农,今天咱们聊聊 Faiss 里面那个让人又爱又恨的 nprobe 参数。这玩意儿吧,就像你家里的遥控器,调好了,电视...
-
NMF算法在协同过滤推荐中的应用:原理与实战
NMF算法在协同过滤推荐中的应用:原理与实战 “咦?这个电影我好像没看过,但评分预测还挺高,要不要试试?” 你是不是经常在各种App上遇到类似的情景?这背后,很可能就藏着一种叫做“非负矩阵分解”(Non-negative Matrix...
-
文本聚类算法大比拼:K-means、层次聚类与DBSCAN,谁更胜一筹?
嘿,朋友们,大家好呀!我是数据小助手,今天我们来聊聊机器学习中一个超酷的领域——文本聚类。想象一下,海量的文本数据像一堆散乱的积木,而聚类算法就像一位魔术师,能够把这些积木按照不同的特性分门别类,让它们变得井然有序。今天,我们要比较三位“...
-
Elasticsearch 模糊查询(Fuzzy Query)性能优化深度指南:从原理到实践
你是否在 Elasticsearch (ES) 中使用了 fuzzy 查询,却发现它有时慢得让人抓狂?尤其是在数据量庞大或者查询条件比较宽松的情况下,性能瓶颈尤为突出。别担心,这篇指南将带你深入理解 fuzzy 查询的底层原理,分...
-
LSH算法在推荐系统中如何“神机妙算”?
LSH算法在推荐系统中如何“神机妙算”? 话说,咱们平时刷淘宝、逛京东、看新闻的时候,是不是经常感觉这些App“比你还懂你”?明明自己啥也没说,它却能精准地给你推荐你感兴趣的商品、新闻,简直就像肚子里的蛔虫!这背后,除了各种高大上的推...
-
MinHash 和 OPH 算法大比拼:谁更快更准?
在海量数据时代,如何快速找到相似的文本或集合,成了一个很重要的课题。想象一下,你要在几百万甚至上亿的文档里,找出跟你手头这篇内容相似的,这可咋整?传统的逐字逐句对比,那速度,估计得等到天荒地老。所以,聪明的人们发明了一些“神器”,比如 M...
-
用Neo4j深挖B站用户关注关系:兴趣圈子识别与内容推荐策略
大家好,我是你们的老朋友,一个在数据海洋里摸爬滚打的技术宅。今天,咱们来聊聊如何用Neo4j这个强大的图数据库,来分析B站用户的关注关系,看看能不能从中挖出一些隐藏的兴趣圈子,甚至为内容推荐提供一些新的思路。 为什么选择Neo4j? ...
-
文本聚类算法实战:电商评论分类与社交媒体话题分析
“文本聚类”这词儿听起来挺玄乎,其实特实用!想象一下,每天电商平台那么多评论,社交媒体上那么多帖子,要是能自动把它们分门别类,那该多方便?没错,文本聚类算法就能干这事儿!今天咱就来聊聊这玩意儿到底咋用,保准你听完也能上手试试。 一、...
