消息队列
-
秒杀系统高并发库存扣减:如何平衡性能与准确性,避免超卖和数据库瓶颈?
老铁,你说的这些痛点,我作为后端开发者,简直是深有体会!秒杀系统那瞬间的百万级请求,尤其是库存扣减,真是系统稳定性的“试金石”。数据库连接池耗尽、超卖,这些都是稍不留神就会踩的坑。我来分享一套我们团队在实际项目中总结出的,兼顾性能、准确性...
-
电商活动中库存与价格实时同步的“准信儿”:技术如何助力提升用户体验?
老兄,你说的这个痛点,真是太能理解了!“搞活动客户抱怨买不到,以为虚假宣传”,这不仅影响销售转化,更直接损害品牌口碑。尤其是在秒杀、大促这种高并发场景下,用户体验的细微问题都可能被放大。你希望能有个“准信儿”,知道技术上到底什么时候能把价...
-
告别CI/CD流水线中的单元测试“玄学”:依赖隔离与Mock/Stub实践指南
在现代软件开发中,CI/CD流水线是保障代码质量和发布效率的核心。然而,你是否也曾遭遇这样的窘境:单元测试明明在本地运行通过,却在CI/CD流水线中频繁因“外部服务不稳定”或“网络波动”而莫名其妙地失败,最终导致流水线中断,徒增排查和重试...
-
底层技术优化的价值如何被看见:从代码到商业影响的沟通策略
看到你花大量时间在底层技术和核心算法优化上,却感觉努力不被认可,甚至影响到晋升和薪资,这种心情我太理解了。很多深耕技术的同学都会遇到类似的困境。毕竟,我们面对的往往是那些非技术背景,或者只关注“可见”业务功能的评定者。 底层技术和核心...
-
电商高并发下库存扣减卡顿?消息队列帮你实现可靠异步处理!
在电商系统的高并发场景下,一个常见的痛点就是核心业务流程(如订单创建、库存扣减)因为某个依赖服务的瞬时故障或性能瓶颈而导致整个流程阻塞,最终影响用户体验甚至造成订单丢失。你提到的库存扣减服务问题,正是这个问题的典型缩影。当库存扣减服务在高...
-
微服务架构中,如何实现服务间的最终一致性?Saga与TCC模式详解
在微服务架构中,如何实现服务间的最终一致性?这确实是许多开发者和架构师面临的共同挑战。传统的单体应用中,我们习惯于依赖数据库的 ACID 事务来保证数据一致性。但微服务将业务拆分成独立的、自治的服务,每个服务可能拥有自己的数据库,这时跨服...
-
无测试覆盖的遗留模块如何安全重构?分步指南与防坑策略
你好!很高兴能和你一起探讨这个在软件开发中非常常见但又充满挑战的问题。处理没有测试覆盖的遗留模块,确实让人如履薄冰,生怕引入新的bug或者在重构的泥潭中迷失方向。别担心,这有一套行之有效的方法论,能让你安全、有章法地推进重构。 核心思...
-
告别慢速测试:内存数据库与Mocking如何助你提升集成测试效率?
最近接手老项目,测试用例跑得非常慢,每次运行集成测试都要连接真实数据库,清库、造数据,这确实是很多老项目都会遇到的痛点。你提到的内存数据库和Mocking,正是解决这类问题的两大利器,但它们解决的侧重点和适用场景略有不同。下面我来详细解释...
-
电商大促配置如何“实时响应”?动态配置中心是你的优雅解法!
公司新上线的电商大促活动功能,要求能根据实时流量动态调整缓存过期时间,甚至在紧急情况下能快速关闭某个不稳定的功能。然而,目前依赖发布才能变更配置的方式,显然无法满足这种高频、实时的运营需求,效率低下且风险高。这不仅是技术挑战,更是业务敏捷...
-
微服务分布式事务:提升容错性与降低耦合度的实践模式
你好!看到你的团队在微服务架构中遇到的分布式事务问题,这确实是许多企业在实践微服务时都会面临的常见痛点。单个服务故障导致整个业务流程受阻,以及多服务数据操作时的数据一致性挑战,都指向了系统容错性和服务间解耦的重要性。我们来探讨几种常用的分...
-
如何设计高并发高性能的数据驱动API?点赞功能案例分析
在设计数据驱动的API时,处理大量并发请求并有效利用数据库资源是关键。以下是一些策略,以用户点赞功能为例进行说明: 1. 流量削峰与异步处理: 问题: 短时间内大量点赞请求直接冲击数据库,导致性能瓶颈。 方案: ...
-
电商流量洪峰下,如何即时调整缓存策略?配置中心是关键!
你好!看到你描述的电商平台流量高峰期缓存策略调整难题,深有同感。手动改代码、发布上线来调整缓存策略,在瞬息万变的流量洪峰面前,确实是远水解不了近渴,还会带来商品价格或库存显示错误的风险。你急需的“即时生效的调整机制”,核心在于实现 缓存策...
-
单元测试中Mock依赖的抉择:何时需要,何时避免?
在软件开发中,单元测试是保障代码质量的重要环节,而Mock(模拟)对象的使用又是单元测试中一个常见的技巧。然而,正如你所困惑的,过度Mock确实会导致测试变得异常复杂,甚至与实际运行逻辑脱节,维护成本急剧上升。那么,究竟应该遵循哪些原则来...
-
电商秒杀如何防范脚本绕过前端,直击后端库存接口?
在电商秒杀或限时抢购等促销场景下,如何有效防止用户(或更准确地说,是恶意脚本和自动化工具)绕过前端的限购逻辑或点击限制,直接向后端库存接口发起大量并发请求,是保障活动公平性和系统稳定的关键一环。这不仅仅是流量冲击问题,更是安全和公平性挑战...
-
百万级并发抢购:数据库优化方案
在构建百万级用户并发抢购平台时,数据库层面的优化至关重要。针对高并发写入和读取性能兼顾的需求,以及避免单点故障,以下是一些数据库层面的优化方案: 1. 数据库选型: NoSQL 数据库: 考虑使用 NoSQL 数据库,...
-
电商秒杀活动:高并发库存管理与防超卖机制解析
电商平台的“秒杀”活动,以其诱人的低价和限时限量特点,总能瞬间引爆用户的购物热情。然而,在用户疯狂点击抢购的背后,是平台系统面临的巨大挑战:如何在高并发(瞬间涌入海量请求)情况下,精确管理商品库存,保证数据一致性,并有效防止“超卖”现象?...
-
揭秘电商“秒杀”:几秒处理百万订单,背后的技术逻辑有多硬核?
你是不是也曾好奇,每次电商平台搞“秒杀”活动,成千上万甚至上百万的商品在短短几秒钟内就被抢购一空,这背后到底藏着怎样的“黑科技”?为什么服务器不会崩溃?为什么库存能精准扣减?今天,我们就来揭开电商秒杀活动的神秘面纱,看看高并发场景下数据处...
-
秒杀系统库存超卖?分布式锁这样选,性能与可靠性两手抓!
我们团队最近在设计秒杀系统时,也遇到了经典的库存超卖问题,确实是个让人头疼的挑战。分布式锁是解决这类问题的“利器”之一,但如何在眼花缭乱的选项中找到最适合秒杀场景的,并兼顾高并发下的性能和可靠性,确实需要好好权衡一番。下面我结合一些实践经...
-
老项目测试提速秘籍:告别漫长数据库交互等待
在一个长期维护的老项目中,测试套件运行一次需要数小时,其中大部分时间耗费在与数据库的交互上,这无疑是开发和维护团队的巨大痛点。漫长的测试周期不仅降低了开发效率,还拖延了问题发现和修复的速度。要解决这个问题,我们需要一套可靠且易于实施的策略...
-
后端新人:消息队列真有那么神?核心价值远不止解耦!
你好啊,后端新人!你这个问题提得特别好,也特别普遍。很多刚接触分布式系统的同学都会有类似的困惑:本来服务间直接调用多简单,为什么非要加个“中间商”——消息队列(Message Queue,简称 MQ)呢?这不是自找麻烦,增加系统复杂性吗?...
