消息队
-
Redis Stream XCLAIM 与 Kafka Rebalance 故障处理对比:谁是更优解?
在构建可靠的消息处理系统时,消费者(Consumer)故障是个绕不开的问题。想象一下,一个消费者刚拿到一条消息,还没来得及确认(ACK),就因为各种原因宕机了。这条消息怎么办?如果处理不当,它可能会丢失,或者永远卡在“处理中”的状态。Re...
-
告别手动捞消息 - 如何用Python自动化处理死信队列难题
你好,我是码农老司机。如果你和消息队列打交道,那么“死信队列”(Dead Letter Queue, DLQ)这个名字你一定不陌生。它就像是消息处理流程中的“急诊室”,专门收治那些因为各种原因无法被正常消费的消息。手动处理DLQ里的消息?...
-
如何设计一个健壮的 Redis Stream 死信队列(DLQ)处理服务
你好,我是你的后端架构师伙伴。今天我们来聊聊一个在基于 Redis Stream 构建消息系统时,经常遇到的一个棘手问题——如何优雅且可靠地处理那些处理失败的消息,也就是所谓的“死信”。直接丢弃?不行,那可能丢失重要业务数据。无限重试?更...
-
Redis Stream死信队列设计 为何需要以及如何优雅处理屡次失败的消息
你好,我是专注于构建健壮系统的架构师。在使用 Redis Stream 构建消息系统时,我们经常会遇到一个棘手的问题: 有些消息,无论我们重试多少次,似乎都注定无法被成功处理。 可能是因为消息本身格式错误、依赖的外部服务持续不可用,或者...
-
Python Celery 异步任务队列实战:从配置到错误处理,构建健壮的邮件发送系统
在现代Web应用开发中,异步任务处理扮演着至关重要的角色。它能够将耗时的操作(例如发送邮件、处理大数据等)从主应用程序流程中分离出来,从而提高应用的响应速度和用户体验。Celery 是一个强大的、分布式的、异步任务队列/作业队列,基于Py...
-
社区养老服务中心如何靠信息技术“弯道超车”?一站式服务平台搭建指南
各位社区工作者、养老服务机构的同仁们,以及关注社区养老发展的研究者们,大家好!随着人口老龄化的加速,如何提升社区养老服务质量,让老人们安享晚年,成为了我们共同面临的重要课题。今天,我想和大家聊聊如何借助信息技术,特别是搭建一站式服务平台,...
-
Scrapy 扩展实战:打造你的专属爬虫监控系统
Scrapy 作为一个强大的爬虫框架,其灵活性不仅体现在 Spider 的编写上,更在于它提供的各种扩展机制。其中,Extensions(扩展)功能允许我们自定义 Scrapy 的行为,从而实现诸如监控爬虫运行状态、发送邮件通知等高级功能...
-
告别烂代码?前端工程师必知 JavaScript 设计模式实战!
作为一名奔波在业务一线的“码农”,你是否也曾遇到过这样的困境? 代码臃肿,难以维护? 牵一发而动全身,改一个小功能,整个项目都可能崩溃。 重复代码满天飞? 复制粘贴一时爽,代码维护火葬场。 逻辑混乱,难以理解? ...
-
高效代理IP池设计:应对反爬虫的利器
在网络爬虫的世界里,与反爬虫机制的斗争从未停歇。一个稳定、高效的代理IP池,是突破反爬虫限制,成功获取数据的关键。那么,如何设计一个能够有效应对各种反爬虫策略的代理IP池呢?本文将深入探讨这一问题,并提供一些常用的实现方法。 一、代理...
