架构
-
Elasticsearch 跨集群数据迁移:`_reindex` from remote 与 Logstash 深度对比与选型指南
在 Elasticsearch (ES) 的世界里,数据迁移或同步是一个常见的需求。无论是集群升级、数据架构调整,还是将数据从一个环境复制到另一个环境,你都可能需要在不同的 ES 集群之间移动数据。这时,两个主流的工具常常被提及:ES 内...
-
ES数据迁移网络对比:_reindex (slices) 与 Logstash 在高延迟丢包下的抉择
在 Elasticsearch (ES) 的世界里,数据迁移是个常见但又充满挑战的任务。无论是集群升级、架构调整还是数据归档,我们都需要将数据从一个地方搬到另一个地方。常用的工具有 ES 内置的 _reindex API (特别是配合...
-
死信队列(DLQ)消息元数据规范指南 为自动化处理铺平道路
在分布式系统和微服务架构中,消息队列(MQ)扮演着至关重要的角色,用于服务间的解耦和异步通信。然而,消息处理并非总是一帆风顺。当消费者处理消息失败,并且重试次数耗尽后,这些“无法处理”的消息通常会被发送到 死信队列(Dead Letter...
-
Redis 分布式锁设计:如何同时防死锁与“脑裂”
在分布式系统里,当多个服务实例需要访问同一个共享资源时,为了避免数据不一致或者操作冲突,我们通常需要一把“锁”来保证同一时间只有一个实例能操作。Redis 因为其高性能和原子操作特性,经常被用来实现分布式锁。但这事儿没那么简单,一不小心就...
-
Redisson 看门狗 (Watchdog) 深度剖析:工作原理、Lua 脚本、性能影响与极端情况
Redisson 作为 Java 中流行的 Redis 客户端,其分布式锁功能广受好评。其中,Watchdog(看门狗)机制是实现锁自动续期的核心,确保了即使业务逻辑执行时间超过预期,锁也不会意外释放导致并发问题。但这个“守护神”是如何工...
-
Redis Stream 精确一次消费 实现的终极指南 - 结合事务、Lua 与持久化
你好,我是专注于分布式系统的老 K。在构建可靠的分布式系统时,消息队列扮演着至关重要的角色。而保证消息的『精确一次处理』(Exactly-Once Semantics)是许多业务场景下的刚需,尤其是在金融、订单处理等对一致性要求极高的领域...
-
如何基于 Redis Stream 构建高可靠死信队列(DLQ)机制
在构建基于消息队列的分布式系统时,处理失败的消息是一个绕不开的问题。反复失败的消息如果不能被妥善处理,可能会阻塞正常消息的处理流程,甚至耗尽系统资源。死信队列(Dead Letter Queue, DLQ)是一种常见的解决方案,用于隔离和...
-
Redis Stream 对比 Kafka 实现延迟队列 哪个更胜一筹
在需要处理“过一段时间再做某事”的场景下,延迟队列就派上用场了。比如,订单创建后30分钟未支付自动取消,或者用户预约提醒等等。技术选型时,Redis 和 Kafka 作为常见的消息处理组件,经常被纳入考虑范围。那么,使用 Redis St...
-
拍照识卡路里App:技术瓶颈究竟在哪儿?
想开发一款拍照就能识别食物卡路里的App,想法很棒!但理想很丰满,现实往往…也还行,只要你啃下这几块硬骨头。咱们来聊聊开发这种App会遇到的技术瓶颈,也好让你心里有个数。 1. 图像识别的准确率:识别≠认出 图像识别是核心,但...
-
大数据赋能:公共图书馆如何助力35+人群职业华丽转身?
在瞬息万变的当下,职业转型对许多人来说已不再是选择题,而是必修课。尤其对35岁以上的朋友们,他们往往积累了丰富的人生经验和职业素养,却也可能面临技能迭代的挑战。公共图书馆,作为我们身边最可信赖的知识殿堂,有没有想过能在这场“转型战役”中扮...
-
智能照明系统如何与BMS无缝对接?解锁建筑节能与智慧管理的新潜力
嘿,老铁们,有没有想过,咱们办公楼里那些一到晚上就亮瞎眼的灯,或者明明没人却一直亮着的走廊灯,每年到底浪费了多少电?是不是感觉这钱花得有点冤?其实啊,这背后隐藏着一个巨大的优化空间,那就是把智能照明系统(Smart Lighting)和咱...
-
程序员绩效评估:如何摆脱“代码行数崇拜”,更科学地衡量贡献?
你好!非常理解你作为初级团队管理者面临的困境。只用代码行数(LOC)来衡量程序员的工作量和质量,确实是一个普遍存在的误区,它不仅片面,还可能导致团队成员为了数字而牺牲代码质量、可维护性,甚至拒绝重构和优化,长此以往对团队和项目都是巨大的伤...
-
连接代码与利润:如何让技术团队理解其业务价值?
在快节奏的科技行业中,技术人员常常沉浸在代码、架构和系统优化中,但有时会感觉自己的工作与公司的“底线”——收入、成本和客户满意度——之间存在一道无形的墙。这种脱节不仅可能降低工作满意度,还可能影响团队的积极性和创造力。那么,我们如何才能帮...
-
如何设计高并发高性能的数据驱动API?点赞功能案例分析
在设计数据驱动的API时,处理大量并发请求并有效利用数据库资源是关键。以下是一些策略,以用户点赞功能为例进行说明: 1. 流量削峰与异步处理: 问题: 短时间内大量点赞请求直接冲击数据库,导致性能瓶颈。 方案: ...
-
后端新人:消息队列真有那么神?核心价值远不止解耦!
你好啊,后端新人!你这个问题提得特别好,也特别普遍。很多刚接触分布式系统的同学都会有类似的困惑:本来服务间直接调用多简单,为什么非要加个“中间商”——消息队列(Message Queue,简称 MQ)呢?这不是自找麻烦,增加系统复杂性吗?...
-
秒杀场景下的分布式锁设计:高可用与高并发的关键考量
在“秒杀”这类高并发场景中,如何有效地管理对有限资源的访问,确保数据一致性,同时兼顾系统的高可用和高并发能力,是核心挑战之一。分布式锁服务正是解决这类资源竞争问题的关键。设计一个高可用、高并发的分布式锁服务,需要综合考虑多个维度,以下是一...
-
秒杀选型:Redis vs ZooKeeper 分布式锁?
秒杀场景下的分布式锁:Redis vs. ZooKeeper,如何抉择? 秒杀活动即将上线,分布式锁方案却迟迟定不下来,这确实让人头疼!Redis 和 ZooKeeper 各有千秋,选择哪个才能在高并发下保证数据安全,又能避免超卖等资...
-
除了Redis和Zk,还有哪些分布式锁实现方案?它们优劣和场景有何不同?
在分布式系统中,为了保证共享资源的并发访问安全,分布式锁是不可或缺的机制。我们最常听到的可能是基于 Redis 或 ZooKeeper 的实现。但除了它们,确实还有其他方案,比如您提到的基于数据库的分布式锁,以及一些新兴的云原生协调服务。...
-
让“用户不爽”开口说话:如何将口头抱怨转化为数据指标?
许多产品团队都会遇到这样的情况:用户抱怨“用起来不爽”,但当产品经理把这些口头反馈传达给研发同事时,对方可能会因为缺乏具体数据而难以理解其重要性,或者认为这只是个别现象。作为一名同样关注用户体验的“产品人”,我深知这种“有苦说不出”的痛点...
-
Lua游戏AI内存泄漏?揭秘引用循环与可视化分析技巧
最近在开发游戏AI模块时,遇到一个让你头疼的问题:Lua AI模块的内存占用持续增长,即使切换场景也无法释放。你怀疑是Lua表的引用关系过于复杂,导致垃圾回收器(GC)无法正常回收。想知道有没有什么办法能“可视化”地分析这些引用关系? ...