推荐系
-
深入浅出NMF非负矩阵分解:数学原理、优化算法与Python实战
深入浅出NMF非负矩阵分解:数学原理、优化算法与Python实战 你是不是经常遇到数据降维、特征提取、主题模型这些概念?今天,咱们就来聊聊一个在这些领域都大放异彩的算法——NMF(Non-negative Matrix Factori...
-
深入浅出:NMF乘法更新规则的数学推导与伪代码实现
你好!今天我们来深入探讨一下非负矩阵分解(NMF)中至关重要的乘法更新规则。我会用清晰的数学推导、通俗的语言和伪代码示例,带你一步步理解这个算法的核心。无论你是机器学习的初学者,还是希望深入研究NMF的算法工程师,相信这篇文章都能为你提供...
-
KL散度下的NMF:原理、推导及伪代码实现
引言 非负矩阵分解 (NMF, Non-negative Matrix Factorization) 是一种常用的降维和特征提取技术。 你可以将它想象成一种“积木搭建”的过程:给定一堆“积木”(原始数据),NMF试图找出一些“基础积木...
-
KL散度在非负矩阵分解(NMF)中的应用及优势
非负矩阵分解(NMF)是一种常用的数据降维和特征提取技术,它将一个非负矩阵分解为两个非负矩阵的乘积。在NMF中,选择合适的损失函数至关重要,它决定了分解结果的质量和特性。KL散度(Kullback-Leibler divergence)作...
-
Python实现KL散度NMF算法及两种KL散度对比
Python实现基于KL散度的NMF算法及两种KL散度对比 非负矩阵分解 (NMF, Non-negative Matrix Factorization) 是一种常用的数据降维和特征提取技术,在图像处理、文本挖掘、推荐系统等领域有着广...
-
NMF算法中的损失函数:平方损失与KL散度深度解析
NMF算法中的损失函数:平方损失与KL散度深度解析 非负矩阵分解(Non-negative Matrix Factorization,NMF)是一种强大的数据分析技术,广泛应用于推荐系统、图像处理、文本挖掘等领域。NMF 的核心思想是...
-
Python实战:NMF矩阵分解Demo,手把手教你实现与效果展示
Python实战:NMF矩阵分解Demo,手把手教你实现与效果展示 “哇,NMF矩阵分解听起来好高级啊!”,“是不是很难学啊?” 别怕,今天咱们就用大白话聊聊NMF(Non-negative Matrix Factorization,...
-
GNMF算法中图构建方式对图像修复/分割的影响及实践建议
在图像处理领域,非负矩阵分解(NMF)及其各种变体,如图非负矩阵分解(GNMF),已成为强大的工具,广泛应用于图像修复、图像分割等任务。GNMF 的核心思想是将一个非负矩阵(例如,图像的像素矩阵)分解为两个非负矩阵的乘积,其中一个矩阵可以...
-
Python实战:余弦相似度LSH算法实现与性能测试
局部敏感哈希(LSH)与余弦相似度:快速找到相似的“你” 在海量数据中,如何快速找到和你相似的“另一个你”?比如,在百万首歌曲中找到与你喜欢的歌曲风格最接近的那些,或者在亿万条微博中找到与你观点最相似的那些。传统的相似度计算方法,如计...
-
MinHash 和 OPH 算法大比拼:谁更快更准?
在海量数据时代,如何快速找到相似的文本或集合,成了一个很重要的课题。想象一下,你要在几百万甚至上亿的文档里,找出跟你手头这篇内容相似的,这可咋整?传统的逐字逐句对比,那速度,估计得等到天荒地老。所以,聪明的人们发明了一些“神器”,比如 M...
-
Faiss 向量检索加速秘籍 Product Quantization (PQ) 原理解密
Faiss 向量检索加速秘籍 Product Quantization (PQ) 原理解密 你好,我是专注于算法优化的老码农。今天,我们来聊聊 Faiss 中一个非常重要的技术——Product Quantization (PQ),也...
-
Faiss实战:手把手教你调优nprobe参数,平衡搜索速度与精度
Faiss 和 nprobe :为什么需要关心它? 嘿,朋友!如果你正在处理大规模向量数据,想要快速找到相似的向量,那么你很可能听说过或者正在使用 Faiss。Facebook AI Research 开发的这个库简直是向量检索领域...
-
Faiss IndexIVF 深度解析 助你从零构建高效向量检索系统
Faiss IndexIVF 索引:从入门到精通 你好,欢迎来到 Faiss 索引的世界!如果你正在构建一个需要快速相似性搜索的系统,例如推荐系统、图像搜索或文本检索,那么 Faiss 绝对是你的得力助手。今天,我们将深入探讨 Fai...
-
豆瓣电影数据高效爬取指南:反爬策略与IP防封技巧
豆瓣的反爬虫机制确实比较严格,直接硬刚很容易被封 IP。但别慌,作为一名老爬虫,我来分享一些经验,教你如何更高效、更安全地爬取豆瓣电影数据,同时尽量避免被封 IP。 一、了解豆瓣的反爬机制 在开始之前,我们需要先了解豆瓣常见的反爬...
-
AI入门不再迷茫:新手友好的学习资源推荐,助你轻松起步!
想踏入AI的大门,却被各种术语和复杂的公式吓退?别担心,AI的学习并非遥不可及。本文将为你推荐一些适合初学者的AI学习资源,让你轻松入门,不再迷茫。 1. 在线课程:从理论到实践,循序渐进 Coursera和edX: 这两...
-
使用Python构建实时数据流处理系统:从概念到实践的关键技术栈与流程解析
在当今数据驱动的世界里,实时数据流处理系统的重要性不言而喻。想象一下,金融交易、物联网设备监控、社交媒体趋势分析——这些场景都迫切需要我们能够即时捕获、处理和响应数据。对于Python开发者来说,构建这样一个系统,并非遥不可及的“高精尖”...
-
大数据赋能:公共图书馆如何助力35+人群职业华丽转身?
在瞬息万变的当下,职业转型对许多人来说已不再是选择题,而是必修课。尤其对35岁以上的朋友们,他们往往积累了丰富的人生经验和职业素养,却也可能面临技能迭代的挑战。公共图书馆,作为我们身边最可信赖的知识殿堂,有没有想过能在这场“转型战役”中扮...
-
孩子沉迷短视频?科普一下智能推荐与过滤系统如何助力家长筛选优质内容!
您好!您提出的这个问题非常普遍,作为家长,您想给孩子筛选优质内容的心情我们都非常理解,毕竟现在网络内容浩如烟海,要从中找出真正有益于孩子成长的科普、益智内容,确实是件耗时耗力的事情。您在寻找的“能根据年龄和内容类型自动推荐和过滤的智能工具...
-
购物网站推荐太“奇怪”?别慌!一文教你读懂算法和保护隐私!
你是不是也有同感?打开购物网站,有些推荐确实挺“懂你”的,能帮你省下不少挑选时间。但有时候,它又会冒出一些让你摸不着头脑的“奇葩”广告,甚至让你心里一咯噔:“我是不是被监听了?我的隐私是不是泄露了?”别担心,这不一定就是隐私泄露,但它确实...
-
在线学习社区隐私设计:如何在不增负担下让欧洲用户掌控数据
问:开发面向欧洲用户的在线学习社区,如何在不增加用户操作负担的前提下,通过巧妙的交互设计,让用户清晰管理自己的信息可见性,并感到数据安全可控? 答: 面对GDPR的严格要求和欧洲用户对数据保护的高度敏感性,为在线学习社区设计一套既...