据分布
-
联邦学习在边缘设备上:模型压缩与加速的实用指南
在联邦学习(Federated Learning, FL)的场景下,如何有效地在资源受限的边缘设备上实现模型压缩和加速,同时确保模型的性能和可解释性,是一个兼具理论与实践挑战的关键问题。边缘设备通常面临计算能力、存储空间和电池寿命的限制,...
-
联邦学习图像识别模型的可解释性方法探索
问题: 我们使用联邦学习训练了一个图像识别模型,如何解释模型的决策过程?是否存在一些可解释性方法可以帮助我们理解模型是如何利用来自不同参与方的数据进行预测的? 回答: 联邦学习(Federated Learning, FL...
-
联邦学习:跨企业数据分析的安全解决方案
跨企业数据分析的安全港:联邦学习技术方案探讨 在跨行业研究项目中,整合来自不同企业的数据是一项挑战。这些数据往往包含商业机密和个人隐私,各企业又有严格的合规要求。如何安全、中立地进行联合分析和建模,成为项目成功的关键。 联邦学习 (F...