异常处理
-
Python定时增量备份网络驱动器目录:防误操作,数据无忧
还在手动复制粘贴备份你的重要文件吗?一不小心误操作,几天的心血可能就没了!今天,我就来教你用Python写一个脚本,实现网络驱动器目录的定时增量备份,再也不用担心文件丢失啦! 为什么选择增量备份? 传统的完全备份,每次都要复制所有...
-
Python图片文字识别并保存:从入门到实践,轻松搞定OCR
想用Python识别图片里的文字,然后保存到txt文件?没问题,这篇教程就带你一步步实现。别担心,即使你是新手,也能轻松上手! 1. 准备工作:安装必要的库 首先,我们需要安装一些Python库来帮助我们完成任务。主要用到两个库:...
-
Python高效批量获取网页标题:多线程URL读取方案
最近有个朋友遇到个小需求,手里攥着一个包含成千上万URL的TXT文件,想要用Python批量访问这些URL,然后把每个网页的标题给扒下来。这要是手动一个一个点开,那得点到猴年马月去!所以,咱就得想想怎么用Python高效地解决这个问题。 ...
-
Python图像文字识别:Tesseract OCR库的安装与使用详解
想用Python实现图片文字识别?没问题,Tesseract OCR绝对能帮上忙!它是一款强大的开源OCR引擎,关键是免费!配合Python的 pytesseract 库,就能轻松实现图片转文字。 1. Tesseract OCR的安...
-
Python图片自动整理:图像处理与地理信息库推荐
想要用Python脚本自动整理你下载的图片,按照拍摄时间和地点分类?这绝对是个好主意!下面我将为你推荐一些非常实用的图像处理库和地理信息库,并提供一些代码示例,帮你快速上手。 1. 图像处理库:PIL/Pillow 首先,我们需要...
-
通用网页数据抓取技术揭秘:自动识别与自定义规则的实现难点
在信息爆炸的时代,从浩如烟海的网页中提取有价值的数据变得至关重要。通用网页数据抓取器应运而生,它旨在自动化地识别网页结构、提取关键信息,并允许用户自定义规则,以适应各种复杂的抓取需求。然而,要实现这样一个看似简单的工具,背后却隐藏着诸多技...
-
Python Celery 异步任务队列实战:从配置到错误处理,构建健壮的邮件发送系统
在现代Web应用开发中,异步任务处理扮演着至关重要的角色。它能够将耗时的操作(例如发送邮件、处理大数据等)从主应用程序流程中分离出来,从而提高应用的响应速度和用户体验。Celery 是一个强大的、分布式的、异步任务队列/作业队列,基于Py...
-
Python Selenium自动化填表指南:搞定各类输入框与动态表单
在网页自动化测试和数据抓取中,经常需要填写各种类型的网页表单并提交。Python结合Selenium库可以很好地完成这项任务。本文将详细介绍如何使用Python和Selenium自动填写网页表单,包括处理常见的输入框类型(文本框、下拉框、...
-
前端异常处理别再try-catch了,试试AOP这招!
作为一名资深前端er,我深知异常处理的重要性。线上代码一出错,轻则用户体验打折,重则直接影响业务。传统的try-catch方式虽然简单粗暴,但用多了,代码里全是冗余的try-catch块,简直让人崩溃!今天,我就来分享一下如何利用AOP(...
-
Playwright实战:电商网站会员专享价抓取,避坑指南!
大家好!今天咱们聊聊一个稍微有点挑战,但绝对实用的主题:用Playwright模拟用户登录电商网站,然后抓取会员专享价或者促销活动价格。这可不是简单的页面数据抓取,涉及到登录验证、Cookie处理等等。别担心,我会尽量用大白话,结合实际案...
-
电商价格监控?手把手教你用Playwright搭一套!
别再手动刷商品价格啦!作为电商运营,你是不是每天都要盯着竞品的价格变动?手动记录,效率低不说,还容易出错。今天,我就教你用Playwright,轻松搭建一套自动化电商价格监控系统,让你彻底解放双手! 为什么选择Playwright?...
-
使用Playwright抓取动态网页内容的实战技巧,以需要登录的页面为例
传统爬虫遇到动态加载内容就束手无策——页面数据通过AJAX异步加载、需要执行JavaScript才能渲染、登录状态校验严格。Playwright作为现代浏览器自动化工具,能完美模拟人类操作: 支持Chromium/Firefox/...
-
Redis ZSet 延迟队列的可靠性拷问-高效扫描、防重与故障恢复机制深度解析
你好,我是老 K,一个在后端摸爬滚打多年的工程师。用 Redis 的 Sorted Set (ZSet) 做延迟队列,这方案想必不少朋友都用过或者听说过。简单,性能也不错,score 存时间戳,member 存任务 ID 或者任务内容,起...
-
Redis分布式锁实战避坑指南-TTL、粒度、可重入和Watchdog怎么选
兄弟们,搞分布式的,哪个没踩过Redis分布式锁的坑?这玩意儿用起来方便,但真要落地到生产环境,各种细节问题能让你头疼好几天。今天咱们就来盘点盘点,实际项目中用Redis锁,最容易遇到的几个大坑,以及怎么爬出来。 坑一:锁的超时时间(...
-
定时任务用分布式锁,Redisson的看门狗机制真的是最佳选择吗?还有哪些更合适的策略?
定时任务场景下的分布式锁:Redisson 看门狗是不是万能药? 你好,我是负责定时任务系统设计的小伙伴。咱们经常遇到一个经典问题:系统部署了多个实例,为了避免同一个定时任务被重复执行,需要加个分布式锁。这听起来很简单,但魔鬼藏在细节...
-
MQ消费幂等性保障 Redis分布式锁Watchdog续期机制如何优雅运作
搞分布式系统的兄弟们,肯定都遇到过一个经典场景:用消息队列(MQ)处理任务,为了防止消息被重复消费导致业务错乱,需要保证消费端的幂等性。而实现幂等性,分布式锁是个常用的手段。用Redis做分布式锁,简单高效, SET key value ...
-
健壮MQ消费框架设计 如何实现自动重试与原子性DLQ投递
在分布式系统中,消息队列(MQ)是解耦和异步化的利器。但只要引入网络和外部依赖,就必然会遇到处理失败的情况:网络抖动、下游服务暂时不可用、数据校验失败等等。如果消费者处理消息失败后直接丢弃或者简单地抛出异常,可能会导致数据丢失或处理不一致...
-
死信队列(DLQ)消息元数据规范指南 为自动化处理铺平道路
在分布式系统和微服务架构中,消息队列(MQ)扮演着至关重要的角色,用于服务间的解耦和异步通信。然而,消息处理并非总是一帆风顺。当消费者处理消息失败,并且重试次数耗尽后,这些“无法处理”的消息通常会被发送到 死信队列(Dead Letter...
-
日志处理不再卡壳 如何设计与实现死信队列(DLQ)机制
嘿,各位奋战在日志处理流水线上的工程师朋友们!你是否也遇到过这样的糟心事:一个精心编写的日志处理脚本,跑得好好的,突然就被某个格式诡异的日志文件、或者某个临时抽风的下游服务给卡住了?整个处理流程停滞不前,新的日志堆积如山,告警邮件塞满了邮...
-
还在用Future?Java响应式编程带你飞!
还在用Future?Java响应式编程带你飞! 大家好,我是你们的编程老司机“代码探险家”!今天咱们聊点儿时髦的,说说Java里的响应式编程,特别是怎么用它来优雅地干掉 Future ,让你的代码在并发场景下跑得更快、更稳、更飘逸! ...
