库连接池
-
深入探究:CompletableFuture 与 ForkJoinPool 的结合应用,以及性能提升策略
深入探究:CompletableFuture 与 ForkJoinPool 的结合应用,以及性能提升策略 Java 中的 CompletableFuture 和 ForkJoinPool 是处理异步任务和并发编程的强大工具。 ...
-
深入比较CyclicBarrier与其他并发工具:Semaphore与Phaser的应用场景与优劣势
在Java并发编程中, CyclicBarrier 、 Semaphore 和 Phaser 是三种常见的并发工具,它们各有特点,适用于不同的场景。本文将深入比较这三者的异同,帮助你更好地理解它们的适用场景和优缺点,从而在多线程开发中做出...
-
Kubernetes HPA 实战:微服务连接池参数的自动调整
“喂,小 K 吗?最近上了 Kubernetes (K8s),感觉怎么样?” “别提了,老哥。上了 K8s,感觉打开了新世界的大门,但也遇到不少坑。最近就在搞 HPA(Horizontal Pod Autoscaler),发现这玩意儿...
-
贴片机软件回滚惨案:数据库操作失败导致系统崩溃的深度剖析与修复指南
嘿,哥们!我是老码农了,这几年一直在和各种贴片机打交道。今天咱聊聊一个让无数工程师头疼的话题——贴片机软件回滚。这玩意儿吧,说起来挺好,但有时候搞不好,数据库一炸,系统就崩了,想想都头大! 1. 回滚的意义:救火还是挖坑? 首先,...
-
Playwright Browser Contexts 在高并发场景下的妙用:提升系统稳定性与性能的秘诀
作为一名测试工程师,我经常需要模拟真实用户场景来测试Web应用的性能和稳定性。在高并发场景下,如何有效地模拟大量用户同时访问和操作,一直是困扰我的难题。最近,我深入研究了 Playwright 的 Browser Contexts 功能,...
-
云原生K8s配置热更新:Apollo配置中心实现零中断的秘诀
在云原生环境下,服务动态伸缩和频繁发布是常态,如何高效进行配置管理和热更新,同时避免服务重启带来的中断,是许多团队面临的挑战。您提出希望找到一个能与K8s动态调度机制无缝衔接的配置中心方案,这是一个非常核心且关键的需求。 传统的配置管...
-
百万级并发抢购:数据库优化方案
在构建百万级用户并发抢购平台时,数据库层面的优化至关重要。针对高并发写入和读取性能兼顾的需求,以及避免单点故障,以下是一些数据库层面的优化方案: 1. 数据库选型: NoSQL 数据库: 考虑使用 NoSQL 数据库,...
-
应用配置频繁修改?试试动态配置,告别重启部署!
你提出的问题,是许多应用开发和运维过程中都会遇到的一个痛点—— 配置变更与服务部署强耦合,导致每次修改都要经历繁琐且有风险的发布流程 。这不仅耗时,还可能影响用户体验。幸运的是,业界已经有了一套成熟的解决方案,我们称之为 动态配置管理 。...
-
微服务转型:如何平衡调用链追踪精度与运维成本?
我们团队在从单体架构向微服务转型的过程中,服务间的通信质量和稳定性确实是一个核心关注点。在分布式系统中,服务调用链路变得复杂,排查问题、性能优化都离不开有效的可观测性手段。调用链追踪(Distributed Tracing)正是解决这些痛...
-
云原生APM工具选型指南:高效监控容器与Serverless应用
在云原生时代,尤其是容器化和Serverless技术日益普及的背景下,传统的应用性能管理(APM)工具面临着前所未有的挑战和机遇。您的团队正在评估不同的APM工具,并特别关注它们在这些新架构下的表现,这抓住了核心痛点。选择一个既能提供详尽...
-
微服务架构下线上故障排查:页面加载缓慢问题分析
线上故障排查:微服务架构下的页面加载缓慢问题 最近遇到一个线上问题,用户反馈某个页面加载速度非常慢,甚至出现 504 超时。我们的团队经过初步排查,发现问题最终指向了后端,但由于系统采用了微服务架构,涉及十几个服务,一下子很难定位到具...
-
系统太“稳定”?别急,你的混沌工程实验可能需要这样优化!
最近看到有朋友说,团队尝试了混沌工程实验,但结果不尽如人意,要么故障注入不进去,要么系统“稳如老狗”,什么问题也发现不了。这确实是很多初次尝试混沌工程的团队会遇到的情况,别担心,这不是你家系统太完美,很可能是我们的实验设计还有提升空间。 ...