副本
-
bak文件是什么,怎么打开
bak文件是一种备份文件,通常用于存储其他文件的副本或以前的状态,以便在需要时进行恢复和还原。它的扩展名通常是".bak"或".bk"。bak文件的打开方法取决于原始文件的格式和生成它的软件。 ...
-
MongoDB 海量数据处理:分片、索引和聚合的最佳实践
MongoDB 海量数据处理:分片、索引和聚合的最佳实践 MongoDB 作为一款 NoSQL 数据库,在处理海量数据方面有着得天独厚的优势。然而,随着数据规模的不断增长,如何高效地存储、查询和分析这些数据成为了一个关键问题。本文将深...
-
MongoDB 海量数据存储的最佳实践:从架构设计到性能优化
MongoDB 海量数据存储的最佳实践:从架构设计到性能优化 MongoDB 作为一款强大的 NoSQL 数据库,在处理海量数据方面有着独特的优势。但要真正发挥 MongoDB 的潜力,并确保其在高负载情况下稳定运行,需要我们对数据存...
-
如何避免重要数据丢失?一份程序员的防丢失指南
如何避免重要数据丢失?一份程序员的防丢失指南 作为一名程序员,我们每天都与数据打交道。代码、文档、设计图、数据库……这些数据对我们来说至关重要,一旦丢失,后果不堪设想。所以,如何避免重要数据丢失,成了我们必须认真对待的问题。 这篇...
-
分布式系统中分区容错性的重要性与实现策略
在构建高可用性的分布式系统时, 分区容错性 成为了一个至关重要的话题。当系统中的一部分由于网络故障或机器故障而无法通信时,如何保证剩余部分的可用性和数据一致性,正是我们必须认真考虑的问题。 什么是分区容错性? 简单来说,分区容错性...
-
HikariCP 秘籍:ConcurrentBag 深度解析,并发性能提升的秘密武器
你好呀,我是老码农张三,很高兴能和你一起探索 HikariCP 连接池的奥秘! 如果你也像我一样,对连接池底层实现原理充满好奇,渴望探究 HikariCP 究竟是如何在众多连接池中脱颖而出,成为 Java 世界的性能标杆的,那么恭喜你...
-
HikariCP 高性能揭秘:ConcurrentBag 的无锁并发之道
大家好,我是你们的科普小助手“代码侦探”。今天,咱们来聊聊 Java 数据库连接池中的“性能之王”——HikariCP。相信很多小伙伴在日常开发中都用过数据库连接池,但你有没有想过,为什么 HikariCP 能在众多连接池中脱颖而出,成为...
-
在Docker和Kubernetes环境下,如何优化你的微服务数据库连接池?
嘿,哥们儿! 咱们今天聊聊微服务里头一个挺重要,但容易被忽视的家伙——数据库连接池。 尤其是在Docker和Kubernetes这种容器化环境里,连接池的配置,那可得好好琢磨琢磨。 不然,轻则服务卡顿,重则数据库直接给你撂挑子,后果很严重...
-
HPA 缩容那些事儿:常见问题与排查指南,告别缩容烦恼!
嗨,大家好!我是老 K,一个在云原生世界里摸爬滚打多年的老兵。今天咱们聊聊 Kubernetes 里的 HPA(Horizontal Pod Autoscaler,水平 Pod 自动伸缩)缩容问题。说实话,HPA 伸缩挺香的,能根据负载自...
-
Kubernetes HPA 缩容策略深度调优指南:像老司机一样玩转弹性伸缩
“喂,小王啊,你上次不是说你们的那个应用在晚上流量下来之后,服务器资源还一直占着,浪费钱吗?今天哥就来教你几招,保证药到病除!” 大家好,我是你们的赛博老中医,专治各种云原生疑难杂症。今天咱们就来聊聊 Kubernetes 里 HPA...
-
Kubernetes HPA 自定义指标缩容策略详解及最佳实践
Kubernetes HPA 自定义指标缩容策略详解及最佳实践 在 Kubernetes 中,Horizontal Pod Autoscaler(HPA)是用于自动扩展或收缩 Pod 副本数量的关键组件。默认情况下,HPA 基于 CP...
-
别再盲目扩缩容!K8s 自定义指标伸缩全攻略,教你精准拿捏资源利用率
“哎,集群又双叒叕告警了!CPU 飙到 90% 了,赶紧扩容!” “等等,先看看其他指标,内存才用了 50%,流量也没啥变化,是不是有啥异常?” 相信不少运维小伙伴都经历过类似的场景。在 Kubernetes(K8s)集群中,如何...
-
Thanos:Prometheus 长期存储与高可用的终极解决方案?
Thanos:Prometheus 长期存储与高可用的终极解决方案? 大家好,我是你们的“监控老司机”!今天咱们来聊聊 Prometheus 的长期存储和高可用问题。相信不少小伙伴在使用 Prometheus 的过程中,都会遇到数据保...
-
Elasticsearch 索引生命周期管理 (ILM) 详解 优化你的数据存储和性能
嘿,哥们儿,最近在玩 Elasticsearch 吗?是不是觉得数据越来越多,索引越来越大,查询越来越慢?别担心,今天咱们就来聊聊 Elasticsearch 的一个超级好用的功能——索引生命周期管理 (ILM)。这玩意儿就像给你的索引上...
-
Elasticsearch分片Indexing Buffer深度解析:大小、刷新机制与内存关联
你好,我是老王,一个在ES性能调优上踩过不少坑的工程师。今天我们来聊聊Elasticsearch(简称ES)里一个非常核心但也容易被忽视的组件——分片(Shard)内部的 Indexing Buffer (索引缓冲区)。这玩意儿直接关系...
-
Redis Stream消费组:原理、实践与Kafka对比,解锁高性能消息队列
你好,我是老王,一个折腾后端技术的老兵。今天我们聊聊 Redis 5.0 带来的一个重量级特性——Stream。很多人可能用 Redis 做缓存、做分布式锁,但你知道它也能当一个相当不错的消息队列(MQ)吗?特别是它的消费组(Consum...
-
边缘 MQTT Broker 集群:授权一致性与可信 Broker 选择策略
在边缘计算场景下,MQTT Broker 集群的部署变得越来越普遍。这种部署方式能够有效地降低延迟、提高可靠性,并减轻云端压力。然而,当多个本地 Broker 同时与云端通信时,如何保证授权策略的一致性,以及在网络分区时,设备如何选择最可...
-
Lua多线程共享数据同步优化:避免锁竞争
问题:我的Lua脚本在多个线程中跑,每次调用C++函数都可能会修改共享数据。我担心频繁加锁解锁会带来巨大的性能开销,尤其是在每秒处理上万次请求时,有没有什么办法能在保证安全的同时尽量减少性能损耗? 这是一个非常实际且常见的问题,尤其是...
-
全球社交媒体内容同步:如何在可用性与一致性间取得平衡?
在全球化社交媒体平台的设计中,确保用户发布的内容能够迅速在全球范围内同步,同时又允许短暂的区域性延迟以优化用户体验,这确实是一个非常经典且充满挑战的问题。它本质上是在**可用性(Availability) 和 一致性(Consistenc...
-
跨地域团队协作文档总是一团糟?揭秘背后的“版本控制”与“冲突解决”魔法
在跨地域团队协作中,你是否也遇到过这样的窘境:会议纪要、需求文档更新总是不及时,不同团队成员在不同版本上讨论,最终导致信息混乱,甚至项目返工?作为产品经理,深感其痛。这背后,其实涉及到文档协作中两大核心挑战—— 版本管理 和 冲突解决 。...