内存
-
Faiss 中 PQ (乘积量化) 算法的实现细节深度解析
Faiss 中 PQ (乘积量化) 算法的实现细节深度解析 嘿,各位 Faiss 的老朋友们,咱们又见面啦!这次咱们不聊别的,就来好好啃一啃 Faiss 中一个非常重要的算法——PQ (乘积量化,Product Quantizatio...
-
Faiss IndexIVF 深度解析 助你从零构建高效向量检索系统
Faiss IndexIVF 索引:从入门到精通 你好,欢迎来到 Faiss 索引的世界!如果你正在构建一个需要快速相似性搜索的系统,例如推荐系统、图像搜索或文本检索,那么 Faiss 绝对是你的得力助手。今天,我们将深入探讨 Fai...
-
ForkJoinPool 监控与优化秘籍:性能调优的终极指南
你好,我是老码农张三。在 Java 并发编程的浩瀚海洋中,ForkJoinPool 就像一艘灵活的快艇,能够高效地处理并行任务。但就像任何高性能引擎一样,ForkJoinPool 也需要精心的监控和优化才能发挥其最大潜力。今天,我就来和你...
-
Redisson 看门狗 (Watchdog) 深度剖析:工作原理、Lua 脚本、性能影响与极端情况
Redisson 作为 Java 中流行的 Redis 客户端,其分布式锁功能广受好评。其中,Watchdog(看门狗)机制是实现锁自动续期的核心,确保了即使业务逻辑执行时间超过预期,锁也不会意外释放导致并发问题。但这个“守护神”是如何工...
-
独木成林算法在非结构化日志数据处理中的实战指南
嘿,哥们儿,今天咱们聊聊在IT圈里挺火的一个话题——用“独木成林”算法来处理那些乱七八糟的日志数据。说实话,这玩意儿听起来高大上,但其实挺有意思的,而且能帮你解决不少实际问题。 1. 啥是“独木成林”?为啥要用它? “独木成林”这...
-
Java中的Future局限性及替代方案探析
在Java多线程编程中, Future 接口是一个非常常用的工具,它允许我们异步执行任务并在稍后获取结果。然而,尽管 Future 功能强大,但它并非完美无缺。在实际项目中, Future 的局限性可能导致开发效率下降,甚至引发潜在的错误...
-
深入浅出:响应式编程中的背压机制与Java实践 (Reactor & RxJava)
你好,我是老码农,很高兴能和你一起探讨响应式编程中一个非常重要的话题——背压(Backpressure)。 在当今高并发、大数据量的应用场景下,响应式编程已经成为了主流选择之一。它能够以非阻塞的方式处理数据流,从而提高系统的吞吐量和响...
-
Java并发工具大比拼:CompletableFuture、ExecutorService与Future的深度解析
在现代Java开发中,并发编程是一个不可避免的话题。为了高效地处理多任务、提高应用程序的响应速度,Java提供了多种并发工具。本文将深入探讨 CompletableFuture 、 ExecutorService 和 Future 这三种...
-
HikariCP与其他常见Java连接池性能对比
在Java开发中,连接池是提升数据库连接管理效率的重要工具。不同的连接池框架在性能、稳定性和易用性方面各有千秋。本文将对比HikariCP与c3p0、DBCP、Druid等常见Java连接池的性能差异,并分析其优缺点,帮助开发者选择最合适...
-
事件捕获参数揭秘:当addEventListener遇上Web Components该注意什么?
当我们在调试Web Components时的事件监听,突然发现点击内部元素的事件没有触发,这可能是事件传播机制在作祟。 一、捕获阶段的隐藏特性 在传统DOM事件流中,addEventListener的第三个参数capture就像潜...
-
如何设计一个可扩展、可维护的基于Prometheus的分布式系统监控方案
在现代 IT 基础设施中,监控系统的设计至关重要。尤其是当我们谈论分布式系统时,选择一个合适的监控工具,能够帮助我们更有效地管理与分析各类服务的性能。Prometheus 作为一个流行的开源监控与报警系统,以其强大的功能和灵活性,被越来越...
-
日志处理不再卡壳 如何设计与实现死信队列(DLQ)机制
嘿,各位奋战在日志处理流水线上的工程师朋友们!你是否也遇到过这样的糟心事:一个精心编写的日志处理脚本,跑得好好的,突然就被某个格式诡异的日志文件、或者某个临时抽风的下游服务给卡住了?整个处理流程停滞不前,新的日志堆积如山,告警邮件塞满了邮...
-
Elasticsearch通配符查询 vs 精确索引列表:数据节点资源消耗差异深度解析
Elasticsearch查询:通配符( applogs-* ) vs 精确列表( applogs-yyyy-mm-dd, ... ),数据节点资源消耗大比拼 你好!作为一名关心Elasticsearch集群资源消耗的开发者或运维同学...
-
Elasticsearch快照揭秘:不同数据类型如何影响备份恢复效率?
嘿,各位 Elasticsearch 的玩家们!咱们今天聊点硬核又实用的话题:Elasticsearch 的快照(Snapshot)功能。这玩意儿可是数据备份和恢复的救命稻草,尤其是在集群迁移、灾难恢复或者简单的数据归档场景下,简直不要太...
-
Semaphore 性能优化秘籍:高并发场景下的实战指南
你好,我是老码农!很高兴能和你一起探讨 Java 并发编程的奥秘。今天,我们聚焦于 Semaphore ,这个在控制并发量方面非常实用的工具。在高并发场景下, Semaphore 的性能至关重要,稍有不慎就可能成为系统瓶颈。本文将深入...
-
事件绑定对页面性能的影响有哪些?
在Web开发中,事件绑定是提高交互性的重要手段。然而,事件绑定对页面性能的影响也不容忽视。本文将探讨事件绑定对页面性能的影响,并提供一些优化建议。 事件绑定对页面性能的影响 内存占用 :每个事件绑定都会占用一定的内存空间。...
-
t-SNE中不同近似最近邻搜索算法的性能大比拼
大家好啊!今天咱们来聊聊t-SNE(t-distributed Stochastic Neighbor Embedding)这个降维算法里头一个很重要的环节——近似最近邻搜索(Approximate Nearest Neighbor Se...
-
碎片时间逆袭!GTD时间管理法,让你的学习效率飞起来
各位小伙伴,是不是经常觉得时间不够用,想学的东西太多,却总是被各种琐事缠身?特别是那些碎片时间,刷个朋友圈就过去了,想想都觉得浪费?今天,就来和大家聊聊如何利用GTD(Getting Things Done)时间管理法,把这些零碎的时间变...
-
Redis Stream XCLAIM 命令详解:用法、时机与最佳实践,解决消费者故障难题
啥时候消息卡住了?消费者组里的“老大难”问题 想象一下这个场景:你用 Redis Stream 构建了一个消息处理系统,多个消费者组成一个消费组(Consumer Group),美滋滋地并行处理消息。突然,某个消费者实例(比如 co...
-
HikariCP 高性能揭秘:ConcurrentBag 的无锁并发之道
大家好,我是你们的科普小助手“代码侦探”。今天,咱们来聊聊 Java 数据库连接池中的“性能之王”——HikariCP。相信很多小伙伴在日常开发中都用过数据库连接池,但你有没有想过,为什么 HikariCP 能在众多连接池中脱颖而出,成为...
