service
-
如何在Istio中实现流量管理以优化服务网格的性能?
在当今的云原生环境中, Istio 作为一款流行的服务网格技术,正逐渐成为微服务应用的必备利器。通过灵活的流量管理措施,Istio能够优化整体的服务性能与可靠性。然而,对于许多开发者和运维人员而言,如何有效地在Istio中实现流量管理仍然...
-
Spring Cloud Alibaba 与 Druid 连接池的实战集成:配置、监控与最佳实践
Spring Cloud Alibaba 与 Druid 连接池的实战集成:配置、监控与最佳实践 大家好,我是你们的科普向导“码农老司机”。今天咱们来聊聊在微服务架构下,如何将 Druid 连接池与 Spring Cloud Alib...
-
HPA 缩容那些事儿:常见问题与排查指南,告别缩容烦恼!
嗨,大家好!我是老 K,一个在云原生世界里摸爬滚打多年的老兵。今天咱们聊聊 Kubernetes 里的 HPA(Horizontal Pod Autoscaler,水平 Pod 自动伸缩)缩容问题。说实话,HPA 伸缩挺香的,能根据负载自...
-
Prometheus规则配置优化:榨干每一滴性能
Prometheus规则配置优化:榨干每一滴性能 大家好,我是你们的老朋友,监控达人“指标侠”!今天咱们来聊聊Prometheus规则配置的那些事儿。相信在座的各位,作为有经验的开发者和系统管理员,对Prometheus肯定不陌生了。...
-
Prometheus Alertmanager 抑制规则(inhibit_rules)详解:原理、参数与实战配置
抑制规则(inhibit_rules)是什么? “喂,我说,你有没有遇到过这种情况:一个告警风暴就把你淹没了,几百条告警信息,其实都是同一个根源问题导致的?Prometheus 的 Alertmanager 里的抑制规则(inhibi...
-
深入理解Alertmanager的分组机制:如何通过标签优化报警通知
Alertmanager是Prometheus生态系统中的关键组件,负责处理和管理由Prometheus生成的报警。在实际应用中,尤其是大规模微服务架构中,报警的数量可能非常庞大。为了有效管理和减少重复信息的噪音,Alertmanager...
-
Alertmanager抑制规则深度解析:告别告警风暴,做个安静的美男子
告别告警风暴,做个安静的美男子:Alertmanager抑制规则深度解析 “喂,110吗?我的服务器又双叒叕告警了!” 相信不少运维小伙伴都经历过类似的“午夜惊魂”。面对海量的告警信息,我们常常感到疲惫不堪,甚至麻木。更可怕的是,...
-
告警风暴终结者:Alertmanager抑制规则与其他降噪机制的终极对比
嘿,哥们!你是不是也经常被各种告警信息淹没,搞得焦头烂额?别担心,今天咱们就来聊聊 Kubernetes 里告警处理的那些事儿。特别是 Alertmanager 的抑制规则,以及它与其他告警降噪机制,比如分组、静默,到底有什么区别,又该怎...
-
Alertmanager 警报分组管理:如何通过 `group_by` 实现最佳实践
在 Prometheus 和 Alertmanager 的监控体系中,告警分组(alert grouping)是一个关键功能,它可以帮助运维团队更高效地管理和处理告警。而 group_by 参数则是实现告警分组的核心配置之一。本文将深...
-
Alertmanager实战:如何通过`group_by`参数优化不同报警频率下的处理效率
在监控和报警系统中,Alertmanager作为一个重要的组件,负责处理来自Prometheus等监控系统的报警信息。在实际应用中,报警的频率可能会因监控对象的复杂性、系统的负载情况等因素而有很大差异。今天,我将通过一个实际的案例来展示如...
-
Kubernetes 告警管家:Alertmanager 实战指南
“喂,小 K 啊,最近咱们的 Kubernetes 集群是不是有点不太平?” “啊?老 P 你咋知道的?我这正焦头烂额呢,各种告警满天飞,我都快成救火队员了!” “哈哈,我就猜到是这样。别慌,今天咱们就来聊聊 Kubernetes...
-
如何使用Alertmanager的静默和抑制功能减少告警风暴
在复杂的Kubernetes监控系统中,告警风暴是一个常见且令人头疼的问题。过多的告警不仅会影响运维人员的工作效率,还可能导致关键告警被忽略。为了解决这个问题,Alertmanager提供了静默(Silences)和抑制(Inhibiti...
-
Prometheus Alertmanager 高级配置详解:路由、分组、抑制,打造精细化告警管理
大家好,我是你们的科普小助手“监控达人”! 在前面的文章中,我们已经介绍了 Alertmanager 的基本配置和使用。相信你已经对如何接收 Prometheus 发送的告警,并通过邮件、Slack 等方式通知到人有了一定的了解。 ...
-
前后端分离架构下,精细化缓存控制之道
你是不是也遇到过这样的困境:明明后端数据已经更新,前端页面却还是“老样子”?或者,页面加载慢如蜗牛,用户体验大打折扣?这很可能是因为你的缓存策略不够“精细”!别担心,今天咱们就来聊聊在前后端分离的架构下,如何通过服务器配置和前端代码优化,...
-
精通 iptables CONNMARK:实现复杂应用流量的精准识别与优先级控制
在复杂的网络环境中,我们常常需要对不同类型的网络流量进行区分对待,特别是要保证关键应用的服务质量(QoS)。比如,你可能希望优先处理集群内部节点间的通信流量,或者为特定用户的 SSH 会话提供更低的延迟。传统的基于 IP 地址和端口的 ...
-
死信队列(DLQ)消息元数据规范指南 为自动化处理铺平道路
在分布式系统和微服务架构中,消息队列(MQ)扮演着至关重要的角色,用于服务间的解耦和异步通信。然而,消息处理并非总是一帆风顺。当消费者处理消息失败,并且重试次数耗尽后,这些“无法处理”的消息通常会被发送到 死信队列(Dead Letter...
-
云原生K8s配置热更新:Apollo配置中心实现零中断的秘诀
在云原生环境下,服务动态伸缩和频繁发布是常态,如何高效进行配置管理和热更新,同时避免服务重启带来的中断,是许多团队面临的挑战。您提出希望找到一个能与K8s动态调度机制无缝衔接的配置中心方案,这是一个非常核心且关键的需求。 传统的配置管...
-
Arthas实战:如何非侵入式监控方法实时调用与排查性能瓶颈?
线上环境无法进行传统意义上的断点调试,这无疑是许多Java开发者在排查问题时的一大痛点。当遇到某个方法执行缓慢,或者想了解其调用频率、成功率等实时指标时,如果不能侵入式地修改代码、发布重启,我们该怎么办? Arthas,作为阿里巴巴开...
-
分布式事务“一致性”头疼?SAGA模式来帮你理清资金流转!
你好!看到你处理本地事务补偿的经验,并对跨服务、尤其是涉及资金流转的业务一致性感到头疼,这确实是分布式系统中的一大挑战。你渴望一个清晰的模式来指导每个阶段的操作和失败回滚,这非常合理。 在分布式系统中,由于网络延迟、服务故障等不确定性...