kubernetes
-
除了 CPU 和内存,GitLab Runner 还需要哪些资源才能高效运行?
除了 CPU 和内存,GitLab Runner 的高效运行还需要考虑许多其他资源因素。这些资源的限制和优化直接影响到 CI/CD 流程的速度、稳定性和可靠性。本文将深入探讨这些关键资源,并提供一些最佳实践建议。 1. 磁盘 I/O...
-
别再盲目扩缩容!K8s 自定义指标伸缩全攻略,教你精准拿捏资源利用率
“哎,集群又双叒叕告警了!CPU 飙到 90% 了,赶紧扩容!” “等等,先看看其他指标,内存才用了 50%,流量也没啥变化,是不是有啥异常?” 相信不少运维小伙伴都经历过类似的场景。在 Kubernetes(K8s)集群中,如何...
-
K8s HPA 终极对比:内置指标 vs. 自定义指标,谁更胜一筹?
K8s HPA 终极对比:内置指标 vs. 自定义指标,谁更胜一筹? 各位老铁,咱们今天来聊聊 Kubernetes(K8s)里一个非常重要的功能——Horizontal Pod Autoscaler(HPA,水平 Pod 自动伸缩)...
-
如何优化Prometheus触发器的性能:减少查询频率与处理延迟
引言 在现代云原生架构中,Prometheus作为监控和告警系统的核心组件,其性能直接影响到整个系统的稳定性与响应速度。特别是当Prometheus用于触发Kubernetes的自动扩展(如KEDA)时,优化其触发器的性能显得尤为重要...
-
Thanos:Prometheus 长期存储与高可用的终极解决方案?
Thanos:Prometheus 长期存储与高可用的终极解决方案? 大家好,我是你们的“监控老司机”!今天咱们来聊聊 Prometheus 的长期存储和高可用问题。相信不少小伙伴在使用 Prometheus 的过程中,都会遇到数据保...
-
Prometheus长期存储方案横评:性能怪兽大比拼,谁是你的菜?
Prometheus 作为云原生监控领域的扛把子,其强大的数据采集、处理和告警能力毋庸置疑。但是,Prometheus 默认只在本地存储数据,而且存储时间有限(默认 15 天)。这对于需要长期保存历史数据、进行趋势分析和容量规划的场景来说...
-
如何通过Alertmanager的分组与去重机制有效减少报警噪音?
引言 在微服务架构中,报警系统的有效性直接影响到问题的定位与及时处理。然而,随着系统规模的扩大,报警数量的激增往往会带来“报警噪音”问题,导致关键信息被淹没。Alertmanager作为Kubernetes生态中的核心组件之一,其分组...
-
Alertmanager 报警风暴来袭?教你几招轻松应对!
“喂,是小王吗?服务器又双叒叕报警了!赶紧看看!” 相信不少运维同学都经历过类似的“夺命连环call”。尤其是在大规模分布式系统中,各种监控指标、日志信息层出不穷,一旦触发阈值,Alertmanager 就会忠实地发出报警。但如果报警...
-
Alertmanager API 实战:动态调整抑制规则,玩转告警自动化管理
你好,我是你的老朋友,运维界的“砖家”阿强。 在 Kubernetes 的监控告警体系中,Prometheus 负责采集和存储监控数据,Alertmanager 负责告警管理。Alertmanager 提供了丰富的告警处理功能,如分组...
-
如何基于Alertmanager API构建高效的告警管理平台
在现代的云原生和容器化环境中,告警管理是确保系统稳定性和可用性至关重要的一环。尤其是当使用Kubernetes这样的容器编排工具时,告警管理平台的作用更为突出。本文将详细讲解如何基于Alertmanager API构建一个高效的告警管理平...
-
如何使用Alertmanager的静默和抑制功能减少告警风暴
在复杂的Kubernetes监控系统中,告警风暴是一个常见且令人头疼的问题。过多的告警不仅会影响运维人员的工作效率,还可能导致关键告警被忽略。为了解决这个问题,Alertmanager提供了静默(Silences)和抑制(Inhibiti...
-
Kubernetes下Snowflake Worker ID分配难题 如何优雅破解?四种主流方案深度对比
嘿,各位在K8s浪潮里翻腾的兄弟们!今天咱们聊一个分布式系统中挺常见,但在K8s这种动态环境里又有点棘手的问题——Snowflake算法的Worker ID分配。 Snowflake本身是个好东西,64位ID,时间戳+数据中心ID+机...
-
使用Python构建实时数据流处理系统:从概念到实践的关键技术栈与流程解析
在当今数据驱动的世界里,实时数据流处理系统的重要性不言而喻。想象一下,金融交易、物联网设备监控、社交媒体趋势分析——这些场景都迫切需要我们能够即时捕获、处理和响应数据。对于Python开发者来说,构建这样一个系统,并非遥不可及的“高精尖”...
-
除了Redis和Zk,还有哪些分布式锁实现方案?它们优劣和场景有何不同?
在分布式系统中,为了保证共享资源的并发访问安全,分布式锁是不可或缺的机制。我们最常听到的可能是基于 Redis 或 ZooKeeper 的实现。但除了它们,确实还有其他方案,比如您提到的基于数据库的分布式锁,以及一些新兴的云原生协调服务。...
-
云原生K8s配置热更新:Apollo配置中心实现零中断的秘诀
在云原生环境下,服务动态伸缩和频繁发布是常态,如何高效进行配置管理和热更新,同时避免服务重启带来的中断,是许多团队面临的挑战。您提出希望找到一个能与K8s动态调度机制无缝衔接的配置中心方案,这是一个非常核心且关键的需求。 传统的配置管...
-
云原生APM工具选型指南:高效监控容器与Serverless应用
在云原生时代,尤其是容器化和Serverless技术日益普及的背景下,传统的应用性能管理(APM)工具面临着前所未有的挑战和机遇。您的团队正在评估不同的APM工具,并特别关注它们在这些新架构下的表现,这抓住了核心痛点。选择一个既能提供详尽...
-
Kubernetes集群规模扩大?你需要一个统一观测平台来驾驭复杂性
随着业务的飞速增长,我们的Kubernetes(K8s)集群规模也在不断扩大,随之而来的却是服务间错综复杂的调用关系和日益严峻的运维挑战。过去,我们可能依赖各个服务独立集成和上报监控数据,但这在庞大的微服务体系中很快就力不从心。当问题出现...
-
如何构建一个“事故免疫”的标准化、自动化CI/CD流水线?
从工程视角来看,设计一套高标准化、高自动化、能无缝集成测试与监控、并在生产事故时能快速定位并回滚的CI/CD流水线,是现代DevOps实践的核心。这不仅仅是工具的堆砌,更是流程、文化与技术的深度融合。 一、流水线设计核心原则 ...
-
项目上线总出问题?CI/CD这么搞,告别手忙脚乱!
兄弟,你这情况我太懂了!每次项目上线,心都提到嗓子眼,生怕出点什么岔子,一回滚更是鸡飞狗跳。还在用原始脚本部署确实效率太低,而且风险系数高。别急,咱们来看看业界成熟的CI/CD方案是怎么解决这些痛点的。 一套成熟的CI/CD流水线,核...
-
把分布式追踪和混沌工程融入CI/CD,让你的交付管线更“智能”
分布式追踪和混沌工程,这两个概念在微服务架构下越来越被重视,它们是构建可观测和高弹性系统的基石。把它们引入CI/CD流程,能帮助我们更早发现问题,提升系统稳定性。作为一名在这个领域摸爬滚打多年的“老兵”,我来分享一些实践经验和心得。 ...