转换
-
Java背压机制实战:Web服务、消息队列与数据库访问优化指南
Java背压机制实战:Web服务、消息队列与数据库访问优化指南 嘿,哥们!想必你是一位对Java技术充满热情的开发者,对高并发、高性能的系统设计有着浓厚的兴趣。今天,咱们就来聊聊Java世界里一个非常重要的概念——背压(Backpre...
-
K8s HPA 终极对比:内置指标 vs. 自定义指标,谁更胜一筹?
K8s HPA 终极对比:内置指标 vs. 自定义指标,谁更胜一筹? 各位老铁,咱们今天来聊聊 Kubernetes(K8s)里一个非常重要的功能——Horizontal Pod Autoscaler(HPA,水平 Pod 自动伸缩)...
-
Kubernetes HPA 监控与优化:像专业人士一样玩转弹性伸缩
Kubernetes HPA 监控与优化:像专业人士一样玩转弹性伸缩 大家好,我是你们的 K8s 老司机阿强!今天咱们来聊聊 Kubernetes 里一个非常重要的功能——Horizontal Pod Autoscaler(HPA)。...
-
深入分析KEDA中Prometheus触发器的实现原理
Kubernetes Event-driven Autoscaling(KEDA)是一个开源项目,旨在通过事件驱动的方式自动扩展Kubernetes的工作负载。在KEDA中,Prometheus触发器是一种强大的机制,它允许开发人员根据P...
-
PromQL高级进阶:聚合、子查询、直方图与性能优化实战指南
你好,我是你的老朋友,监控达人“Prometheus小能手”。今天咱们来聊聊PromQL的那些高级玩法,保证让你对PromQL的理解更上一层楼! 前言:PromQL,不仅仅是查询 对于咱们SRE工程师来说,Prometheus就像...
-
Prometheus 直方图 Bucket 设置秘籍:响应时间分布的艺术
你好,我是老码农,一个在 DevOps 领域摸爬滚打多年的老兵。今天咱们聊聊 Prometheus 直方图(Histogram)的 Bucket 设置,这可是个技术活儿,直接关系到你监控系统的效果和决策的准确性。特别是对于那些需要深度定制...
-
Prometheus 监控指标优化之道:Kubernetes 环境下的实践指南
Prometheus 监控指标优化之道:Kubernetes 环境下的实践指南 “喂,小王啊,最近咱们 Kubernetes 集群的 Prometheus 报警有点多,你看看是不是指标太多了,CPU 负载也挺高的。” “啊?张哥,...
-
Gossip协议消息签名与验证的神秘面纱:原理、算法与代码示例
“喂,小G,你知道Gossip协议吗?” “当然啦,这可是分布式系统中的‘八卦’高手!你想了解啥?” “我最近在研究Gossip协议,发现它在消息传播时,好像还做了签名和验证,这是怎么回事?能给我讲讲吗?” “没问题!这就给你...
-
首尔S-Map数字孪生城市项目深度解析:技术、应用与城市管理的未来
大家好!我是你们的科普小助手“城市探秘者”。今天咱们来聊聊一个非常前沿的话题——数字孪生城市。特别是韩国首尔的S-Map项目,这可是全球数字孪生城市建设的典范案例。对于咱们城市规划和管理专业的同学来说,这绝对是个值得深入研究的课题。 ...
-
宝宝B超检查那些事儿:新手爸妈一看就懂的B超指南
各位新手爸妈们,大家好呀!我是你们的贴心科普小助手“B超宝宝”。今天咱们来聊聊宝宝B超检查的那些事儿。第一次带宝宝去做B超,是不是心里有点忐忑,又有点好奇呢?别担心,看完这篇,保证你对宝宝B超了如指掌! 一、B超是啥?为啥要给宝宝做B...
-
宝宝的“透视眼”:儿童B超检查全攻略,你想知道的都在这里!
“哎呀,我家孩子肚子疼,要不要做个B超看看?” “听说B超有辐射,对孩子不好吧?” “儿童B超都能检查出啥?跟大人做的一样吗?” …… 各位宝爸宝妈们,是不是经常被这些关于儿童B超的问题困扰?别担心,今天咱们就来好好聊聊儿...
-
别只知道MinHash!这些LSH算法也超好用
咱们聊聊局部敏感哈希(Locality Sensitive Hashing,简称LSH)那些事儿。你可能听说过MinHash,它是LSH家族里的一员猛将,尤其擅长处理集合相似度问题。但LSH可不止MinHash这一把刷子,今天就带你认识一...
-
MinHash 和 OPH 算法大比拼:谁更快更准?
在海量数据时代,如何快速找到相似的文本或集合,成了一个很重要的课题。想象一下,你要在几百万甚至上亿的文档里,找出跟你手头这篇内容相似的,这可咋整?传统的逐字逐句对比,那速度,估计得等到天荒地老。所以,聪明的人们发明了一些“神器”,比如 M...
-
iptables TRACE日志太难读?教你写个脚本自动分析数据包路径
iptables 的 TRACE 功能简直是调试复杂防火墙规则的瑞士军刀,它能告诉你每一个数据包在 Netfilter 框架中穿梭的完整路径,经过了哪些表(table)、哪些链(chain)、匹配了哪些规则(rule),最终命运如...
-
日志处理不再卡壳 如何设计与实现死信队列(DLQ)机制
嘿,各位奋战在日志处理流水线上的工程师朋友们!你是否也遇到过这样的糟心事:一个精心编写的日志处理脚本,跑得好好的,突然就被某个格式诡异的日志文件、或者某个临时抽风的下游服务给卡住了?整个处理流程停滞不前,新的日志堆积如山,告警邮件塞满了邮...
-
Redis HyperLogLog 实战指南:在 Flink/Spark 中实现海量数据实时基数统计与状态管理
在处理海量实时数据流时,精确计算独立访客数(UV)、不同商品被点击次数等基数(Cardinality)指标往往是性能瓶颈。传统的 COUNT(DISTINCT column) 或 Set 数据结构在数据量巨大时会消耗惊人的内存和计算资...
-
Redis Stream死信队列设计 为何需要以及如何优雅处理屡次失败的消息
你好,我是专注于构建健壮系统的架构师。在使用 Redis Stream 构建消息系统时,我们经常会遇到一个棘手的问题: 有些消息,无论我们重试多少次,似乎都注定无法被成功处理。 可能是因为消息本身格式错误、依赖的外部服务持续不可用,或者...
-
深入剖析TCP TIME_WAIT状态 为啥它赖着不走以及如何在高并发服务器上优雅送走它
嘿,各位奋战在一线的后端同学、网络大佬和SRE们!今天咱们来聊聊一个老生常谈但又极其重要的话题——TCP的 TIME_WAIT 状态。你可能在 netstat -an | grep TIME_WAIT | wc -l 时看到过成千上万的这...
-
CSS Houdini的Typed OM如何提升Web应用性能
传统CSSOM操作需要频繁进行字符串解析: // 旧方式获取padding值 const padding = element.style.padding; // 返回"10px 20px"字符串 const va...
-
用AI“吃”照片:食物识别与卡路里估算技术详解
你是否曾为记录每日饮食而烦恼?手动记录不仅耗时,还容易出错。想象一下,只需拍一张照片,AI就能告诉你食物的种类和大致卡路里含量,是不是很方便?本文将深入探讨如何利用AI技术实现这一功能,让饮食记录变得轻松高效。 1. 技术原理:AI图...