算法
-
Redis Stream 对比 Kafka 实现延迟队列 哪个更胜一筹
在需要处理“过一段时间再做某事”的场景下,延迟队列就派上用场了。比如,订单创建后30分钟未支付自动取消,或者用户预约提醒等等。技术选型时,Redis 和 Kafka 作为常见的消息处理组件,经常被纳入考虑范围。那么,使用 Redis St...
-
广告系统UV统计大杀器 Redis HyperLogLog 实战案例分享
搞广告系统的兄弟们,肯定都为一件事情头疼过——**独立用户覆盖数(Unique Visitors, UV)**的统计。尤其是当你的系统需要处理海量曝光、点击数据,并且业务方还要求实时、多维度(跨广告、跨时间、跨地域等)查询UV时,那酸爽....
-
Redis分布式锁大比拼:Redisson、Jedis+Lua与Curator(ZooKeeper)谁是王者?深度解析选型依据
在构建分布式系统时,确保资源在并发访问下的互斥性是一个核心挑战。分布式锁应运而生,而基于Redis实现的分布式锁因其高性能和相对简单的特性,成为了非常流行的选择。然而,具体到实现方案,开发者常常面临抉择:是选择功能全面、封装完善的Redi...
-
Redis 分布式锁设计:如何同时防死锁与“脑裂”
在分布式系统里,当多个服务实例需要访问同一个共享资源时,为了避免数据不一致或者操作冲突,我们通常需要一把“锁”来保证同一时间只有一个实例能操作。Redis 因为其高性能和原子操作特性,经常被用来实现分布式锁。但这事儿没那么简单,一不小心就...
-
消息队列消费重复?业务ID、状态机、分布式锁如何实现优雅幂等
嘿,各位奋斗在后端的兄弟姐妹们,咱们聊个老生常谈但又极其重要的话题——消息队列(MQ)的消费幂等性。用MQ解耦、异步、削峰填谷是爽,可一旦涉及到关键业务,比如订单创建、积分增减、库存扣减,要是消息被重复消费了,那后果...啧啧,轻则数据错...
-
健壮MQ消费框架设计 如何实现自动重试与原子性DLQ投递
在分布式系统中,消息队列(MQ)是解耦和异步化的利器。但只要引入网络和外部依赖,就必然会遇到处理失败的情况:网络抖动、下游服务暂时不可用、数据校验失败等等。如果消费者处理消息失败后直接丢弃或者简单地抛出异常,可能会导致数据丢失或处理不一致...
-
BBR加速下如何用iptables与tc精细控制流量:保障ES CCR优先级的实战指南
在跨国、高延迟、丢包环境下,开启BBR(Bottleneck Bandwidth and Round-trip propagation time)拥塞控制算法能够显著提升TCP连接的吞吐量,这对于很多业务,比如Elasticsearch(...
-
Elasticsearch跨地域CCR复制延迟与带宽瓶颈终极指南:TCP优化与ES配置实战
当你负责维护横跨大洲(比如亚欧、跨太平洋)的 Elasticsearch 集群,并依赖跨集群复制(CCR)来同步数据时,高延迟和有限的带宽往往会成为性能杀手,导致数据同步滞后、复制不稳定。别担心,这并非无解难题。咱们今天就深入聊聊,如何通...
-
ES数据迁移网络对比:_reindex (slices) 与 Logstash 在高延迟丢包下的抉择
在 Elasticsearch (ES) 的世界里,数据迁移是个常见但又充满挑战的任务。无论是集群升级、架构调整还是数据归档,我们都需要将数据从一个地方搬到另一个地方。常用的工具有 ES 内置的 _reindex API (特别是配合...
-
Elasticsearch查询性能揭秘:Term、Match、Range、Bool底层执行差异与优化之道
Elasticsearch查询性能:不只是搜到,更要搜得快! 嘿,各位在Elasticsearch(简称ES)世界里摸爬滚打的兄弟姐妹们!我们天天都在用ES写查询,什么 term 、 match 、 range 、 bool 信手拈来...
-
Elasticsearch聚合查询性能优化实战:告别缓慢,榨干性能的关键技巧
Elasticsearch (ES) 的聚合(Aggregations)功能极其强大,是进行数据分析和构建仪表盘的核心。但随着数据量增长和查询复杂度提升,聚合查询的性能往往成为瓶颈。查询响应缓慢、CPU 飙升、内存 OOM… 你是否也遇到...
-
Elasticsearch聚合揭秘:bucket和metric有何不同 如何协同工作?
Elasticsearch聚合:不只是搜索,更是强大的数据分析引擎 嘿,你好!如果你正在使用Elasticsearch(简称ES),很可能已经体会过它闪电般的搜索速度。但ES的魅力远不止于此。当你的索引里塞满了成千上万甚至数百万的文档...
-
深入剖析Elasticsearch快照:如何智能判断段文件是否需要复制?
Elasticsearch (ES) 的快照功能是数据备份和恢复的关键机制,特别是它的增量特性,极大地提高了效率并节省了存储空间。那么,ES 在创建快照时,是如何精确判断哪些数据文件(特别是构成索引核心的 Lucene 段文件)已经存在于...
-
Elasticsearch 搜索快照与兼容 S3 对象存储 (OSS/COS) 集成配置指南
Elasticsearch 搜索快照与兼容 S3 对象存储 (OSS/COS) 集成配置指南 嘿,哥们儿,最近在琢磨 Elasticsearch 数据的备份和恢复方案吗?或者说,你也在考虑如何让你的数据存储更灵活,成本更可控? 那么恭...
-
Faiss IndexHNSW 深入解析 参数调整对搜索性能的影响
你好,我是老黄,一个热爱折腾 Faiss 的开发者。今天,我们来聊聊 Faiss 中 IndexHNSW 这个索引,以及它的参数调整对搜索性能的影响。如果你也正在使用或者考虑使用 HNSW 来处理复杂的数据集,那么这篇文章绝对适合你。 ...
-
深入剖析Faiss IndexIVF系列:数据分布与K-Means训练如何影响你的向量索引性能
你好!如果你正在使用Faiss处理大规模向量相似性搜索,并且对 IndexIVF 系列索引(比如 IndexIVFFlat , IndexIVFPQ , IndexIVFScalarQuantizer )的性能调优感到头疼,特别...
-
Faiss选型终极指南:Flat、IVF、HNSW索引大比拼,谁是你的最优解?
你好!我是Faiss老司机。在向量检索的世界里,Faiss(Facebook AI Similarity Search)无疑是一个强有力的武器库。它提供了多种索引结构,让我们可以根据不同的需求在海量向量数据中快速找到相似的邻居。但问题也随...
-
Faiss 索引的未来展望 探索向量搜索技术的无限可能
嘿,小伙伴们,大家好呀!我是你们的老朋友——一个热爱技术,喜欢分享的码农。今天咱们聊点啥呢? 聊聊一个在当下火得发烫,未来更是潜力无限的技术—— Faiss! 什么是 Faiss? 为啥这么火? 简单来说,Faiss 就是一个由 ...
-
Faiss 索引终极对决 IndexHNSW PQ vs IndexIVFPQ 全方位对比分析
Faiss 索引终极对决 IndexHNSW PQ vs IndexIVFPQ 全方位对比分析 嘿,哥们!今天咱们来聊聊在 Faiss 这个强大的向量检索库里,两种融合了 PQ(Product Quantization,乘积量化)的索...
-
Faiss PQ 进阶:GPU 加速与 HNSW 融合的深度探索
你好!如果你正在处理海量的向量数据,并且希望在速度、内存和精度之间找到那个“甜蜜点”,那么你一定对 Faiss 不陌生。而在 Faiss 的众多索引技术中,乘积量化(Product Quantization, PQ)无疑是压缩和加速近似最...
