JAVA
-
Java与Python:两种编程语言的异步编程对比
引言 在现代软件开发中,异步编程成为提升应用性能和响应速度的重要手段。不同于传统同步模型,异步编程允许程序继续执行而不必等待某个操作完成,这对于处理I/O密集型任务尤为重要。本文将深入探讨Java与Python在异步编程上的特点、优势...
-
新手程序员入门指南:编程语言选择、学习与就业全方位解析
啥?编程语言那么多,我该学哪个? 刚准备踏入编程大门或者想转行当程序员的你,是不是被五花八门的编程语言搞得眼花缭乱?别慌!今天咱们就来好好聊聊,到底该怎么选编程语言,以及学了之后能干啥。 先别急着埋头苦学,咱们先搞清楚一件事: 没...
-
深入解析Java并发编程中的锁机制
在Java并发编程中,锁机制是确保线程安全的重要手段。本文将详细讲解Java中几种常见的锁机制,包括 synchronized 关键字、 ReentrantLock 、 ReadWriteLock 、 StampedLock 等,并分析它...
-
深入解析Java中的Semaphore:底层原理与实现细节
什么是Semaphore? Semaphore(信号量)是Java并发编程中的一个重要工具,用于控制对共享资源的访问。它通过维护一个许可证计数器来实现对资源的限制,确保同一时间只有有限数量的线程可以访问资源。Semaphore的核心思...
-
Java连接池详解:原理、作用与常见实现,看完这篇就够了!
啥是Java连接池? “连接池”这仨字,你是不是经常听到?尤其是在和数据库打交道的时候。 简单来说,它就像一个“水池子”,里面预先存着一些已经准备好的数据库连接。 咱们的程序需要连接数据库的时候,不用每次都临时去“搭桥”(创建连接),...
-
HikariCP 秘籍:ConcurrentBag 深度解析,并发性能提升的秘密武器
你好呀,我是老码农张三,很高兴能和你一起探索 HikariCP 连接池的奥秘! 如果你也像我一样,对连接池底层实现原理充满好奇,渴望探究 HikariCP 究竟是如何在众多连接池中脱颖而出,成为 Java 世界的性能标杆的,那么恭喜你...
-
HikariCP连接池的idleTimeout和maxLifetime参数深度解析:资源优化与稳定性实战
你好,我是爱折腾技术的技术宅。今天咱们来聊聊Java开发中经常打交道的数据库连接池,特别是HikariCP这个备受推崇的家伙。作为一名有追求的程序员,你肯定希望自己的应用性能杠杠的,资源利用率高高的,系统稳如老狗。那么,HikariCP的...
-
HikariCP连接池监控与性能调优:JMX、日志分析与性能测试实战指南
HikariCP连接池监控与性能调优:JMX、日志分析与性能测试实战指南 大家好,我是你们的“数据库连接池小管家”!今天咱们来聊聊HikariCP连接池的监控和性能调优,这可是保证数据库连接稳定高效的关键环节。对于咱们这些注重系统运维...
-
Druid 监控实战:微服务场景下的订单与用户服务性能优化
你好,我是老码农张三。在当今的微服务架构下,系统监控的重要性不言而喻。今天,我将结合实际的订单服务和用户服务场景,带你深入了解如何利用 Druid 监控来定位和解决实际问题,助你成为微服务监控方面的专家。 1. 微服务架构下的挑战 ...
-
源码剖析:CyclicBarrier 如何实现多线程同步?
你好,我是你的源码剖析向导“并发小能手”。今天咱们来聊聊 Java 并发工具类中的 CyclicBarrier,看看它是如何实现多线程同步的。 CyclicBarrier 是什么? CyclicBarrier,字面意思是“循环的屏...
-
深入剖析 Java ForkJoinPool:工作窃取算法及性能对比
你好,我是你们的“并发编程小能手”!今天咱们来聊聊 Java 并发编程中的一个高级工具——ForkJoinPool。别看它名字里带个“Pool”(池),它可不是一般的线程池。ForkJoinPool 是 Java 7 引入的一种特殊线程池...
-
庖丁解牛 ForkJoinPool:从源码深处剖析其精妙的并行之道
庖丁解牛 ForkJoinPool:从源码深处剖析其精妙的并行之道 你好,我是你的老朋友,码农阿泽。 你是否也曾被 Java 并发编程的复杂性所困扰?多线程、锁、同步……这些概念是否让你感到头疼?别担心,今天我们就来一起深入探索 ...
-
ForkJoinPool与其他Java并发框架的对比及适用场景
在Java并发编程中,选择合适的并发框架是确保应用程序性能和效率的关键。本文将对比 ForkJoinPool 与 ThreadPoolExecutor 、 CompletableFuture 等常见Java并发框架,分析它们的优缺点及适用...
-
ForkJoinPool任务窃取机制深度剖析:递归任务的并行优化
ForkJoinPool任务窃取机制深度剖析:递归任务的并行优化 你好,我是你的朋友“并行小能手”。今天咱们来聊聊Java并发编程中的一个高级工具——ForkJoinPool。它特别擅长处理可以“分而治之”的任务,尤其是递归任务。而F...
-
深入浅出:响应式编程中的背压机制与Java实践 (Reactor & RxJava)
你好,我是老码农,很高兴能和你一起探讨响应式编程中一个非常重要的话题——背压(Backpressure)。 在当今高并发、大数据量的应用场景下,响应式编程已经成为了主流选择之一。它能够以非阻塞的方式处理数据流,从而提高系统的吞吐量和响...
-
Redis HyperLogLog 实战指南:在 Flink/Spark 中实现海量数据实时基数统计与状态管理
在处理海量实时数据流时,精确计算独立访客数(UV)、不同商品被点击次数等基数(Cardinality)指标往往是性能瓶颈。传统的 COUNT(DISTINCT column) 或 Set 数据结构在数据量巨大时会消耗惊人的内存和计算资...
-
TensorFlow安卓垃圾分类:Python模型搭建与部署实战
TensorFlow安卓垃圾分类:Python模型搭建与部署实战 想让你的手机也能识别垃圾类型,轻松实现智能分类吗?本文将手把手教你使用Python的TensorFlow框架,搭建一个垃圾图像分类模型,并将其部署到安卓手机上。无需复杂...
-
告别“玄学”测试:如何隔离单元测试中的外部RPC依赖
项目中的老旧代码,业务逻辑直接调用外部RPC接口,导致单元测试跑起来很不稳定,网络抖动或者外部服务更新都会影响测试结果,这确实是个让人头疼的问题。每次修改代码,都希望能在本地快速验证逻辑,而不是被这些外部因素干扰。要解决这个问题,核心思想...
-
告别慢速测试:内存数据库与Mocking如何助你提升集成测试效率?
最近接手老项目,测试用例跑得非常慢,每次运行集成测试都要连接真实数据库,清库、造数据,这确实是很多老项目都会遇到的痛点。你提到的内存数据库和Mocking,正是解决这类问题的两大利器,但它们解决的侧重点和适用场景略有不同。下面我来详细解释...
-
桌面应用插件框架:如何利用OSGi实现动态加载与强隔离?
你好!你提出的桌面应用插件框架需求非常典型,也是构建高可扩展、高健壮性应用的关键挑战。核心在于实现插件的 动态管理(加载与卸载) 和 严格隔离(类加载器与资源) 。这确实是OSGi等模块化技术大展拳脚的场景。 我们先来剖析一下问题的核...